DOI QR코드

DOI QR Code

Characterization of manganese oxide supercapacitors using carbon cloth

Carbon Cloth을 이용한 이산화망간 슈퍼커패시터 특성 연구

  • Lee, Seung Jin (School of Electronics and Computer Engineering, Chonnam National University,) ;
  • Kim, Chihoon (School of Electronics and Computer Engineering, Chonnam National University,) ;
  • Ji, Taeksoo (School of Electronics and Computer Engineering, Chonnam National University,)
  • 이승진 (전남대학교 전자컴퓨터공학부) ;
  • 김치훈 (전남대학교 전자컴퓨터공학부) ;
  • 지택수 (전남대학교 전자컴퓨터공학부)
  • Received : 2017.09.21
  • Accepted : 2017.10.25
  • Published : 2017.10.31

Abstract

Global energy consumption is rapidly increasing yearly due to drastic industrial advances, requiring the development of new energy storage devices. For this reason, supercapacitors with fast charge-discharge, long life cycle and high power density is getting attention, and have been considered as one of the potential energy storage systems. In this research, we developed a supercapacitor that consists of amorphous manganese oxide($MnO_2$) electrodes deposited onto carbon cloth substrates using the hydrothermal method. The Fe-doped amorphous $MnO_2$ samples were characterized by X-ray diffraction(XRD), Energy Dispersive X-ray spectroscopy(EDX), as well as scanning electron microscopy(SEM). The electrochemical analysis of the prepared samples were performed using cyclic voltammetry and galvanostatic charge-discharge measurements in 1M $Na_2SO_4$ electrolyte. The test results demonstrate that the supercapacitor based on the Fe-doped amorphous $MnO_2$ electrodes has a specific capacitance as high as 163F/g at 1A/g current density, and good cycling stability of 87.34% capacitance retention up to 1000 cycles.

산업화의 급격한 진전으로 인한 에너지 소비가 세계적으로 증가되면서 새로운 에너지 저장 소자에 대한 개발의 필요성이 늘고 있으며, 이에 빠른 충 방전 시간과 반영구적으로 사용이 가능한 슈퍼커패시터에 대한 연구가 활발히 진행 중이다. 본 연구에서는 수열반응(Hydrothermal) 제조법을 이용하여 기판인 탄소섬유(carbon cloth)에 비정질의 이산화망간($MnO_2$)을 도포하여 슈퍼커패시터를 제작하였다. 탄소섬유에 Fe 이온이 도핑 된 이산화망간을 결합한 전극으로 이루어진 슈퍼커패시터의 특성 파악을 위해 전기주사현미경(SEM), X-ray 회절분석(XRD), 그리고 X-ray 분광 분석(EDX)을 실시하였다. 또한, 1 M의 $Na_2SO_4$ 전해질에서 순환전압전류법(Cyclic Voltammetry)과 정전류충전법(Galvanostatic charge-discharge)을 통해 슈퍼커패시터의 전기화학적 특성을 조사하였으며, 이를 통해 전류밀도 1 A/g에서 정전용량이 163 F/g 임을, 그리고 1000 회의 충 방전 후 수명 측정 시에 안정적으로 87.34%가 유지됨을 확인하였다.

Keywords

References

  1. C. Xu, F. Kang, B. Li, and H. Du, "Recent progress on manganese dioxide based supercapacitors," Journal of materials research, Vol. 25, No. 08, pp. 1421-1432, Aug 2010. https://doi.org/10.1557/JMR.2010.0211
  2. Y. Wang, J. Guo, T. wang, J. Shao, D. Wang, and Y. W. Yang, "Mesoporous transition metal oxides for supercapacitors" Nanomaterials, Vol. 5, No. 4, pp. 1667-1689, Oct 2015. https://doi.org/10.3390/nano5041667
  3. M. Beidaghi, and Y. Gogotsi, "Capacitive energy storage in micro-scale devices : recent advances in design and fabrication of microsupercapacitors," Energy & Environmental Science, Vol. 7, No. 3, pp. 867-884, Jan 2014. https://doi.org/10.1039/c3ee43526a
  4. V. S. Bagotsky, A. M. Skundin, and Y. M. Volfkovich, Electrochemical power sources: batteries, fuel cells, and supercapacitors, New York, John Wiley & Sons, 2015.
  5. J. Shim, R. Kostecki, T. Richardson, X. Song, and K. A. Striebel, "Electrochemical analysis for cycle performance and capacity fading of a lithium-ion battery cycled at elevated temperature," Journal of power sources, Vol. 112, No. 1, pp. 222-230, Oct 2002. https://doi.org/10.1016/S0378-7753(02)00363-4
  6. Z. Tang, C. H. Tang, and H. Gong, "A High Energy Density Asymmetric Supercapacitor from Nano-architectured $Ni(OH)_2$/Carbon Nanotube Electrodes," Advanced Functional Materials, Vol. 22, No. 6, pp. 1272-1278, Mar 2012. https://doi.org/10.1002/adfm.201102796
  7. C. Liu, Z. Yu, D. Neff, A. Zhamu, and B. Z. Jang, "Graphene-based supercapacitor with an ultrahigh energy density," Nano letters, Vol. 10, No. 12, pp. 4863-4868, Nov 2010. https://doi.org/10.1021/nl102661q
  8. J. Yan, Q. Wang, T. Wei, and Z. Fan, "Recent advances in design and fabrication of electrochemical supercapacitors with high energy densities," Advanced Energy Materials, Vol. 4, No. 4, pp. 1300816, Mar 2014. https://doi.org/10.1002/aenm.201300816
  9. H. Jiang, C. Li, T. Sun, and J. Ma, "A green and high energy density asymmetric supercapacitor based on ultrathin $MnO_2$ nanostructures and functional mesoporous carbon nanotube electrodes", Nanoscale, Vol. 4, No. 12, pp.807-812, Feb. 2012. https://doi.org/10.1039/C1NR11542A
  10. J. Kim, B. Kim, and S. Choi, "2D LiDAR based 3D Pothole Detection System," The Journal of Digital Contents Society, Vol. 18, No. 5, pp. 989-994, Aug. 2017. https://doi.org/10.9728/DCS.2017.18.5.989
  11. X. Dong, W. W. Shen, J. Gu, L. Xiong, Y. Zhu, H. Li, and J. Shi, "$MnO_2$ embedded in mesoporous carbon wall structure for use as electrochemical capacitors," The Journal of Physical Chemistry B, Vol. 110, No. 12, pp. 6015-6019 Jan 2006. https://doi.org/10.1021/jp056754n
  12. S. Wang, Q. Li, M. Chen, W. Pu, Y. Wu, and M. Yang, "Electrochemical capacitance performance of Fe-doped $Co_3O_4$/graphene nanocomposite: investigation on the effect of iron," Electrochimica Acta, Vol. 215, pp. 473-482, Oct 2016. https://doi.org/10.1016/j.electacta.2016.08.138
  13. Z. Li, A. Gu, Z. Lou, J. Sun, Q. Zhou, and K. Y. Chan, "Facile synthesis of iron-doped hollow urchin-like $MnO_2$ for supercapacitors," Journal of Materials Science, Vol. 52, No. 9, pp. 4852-4865, May 2017. https://doi.org/10.1007/s10853-016-0720-z
  14. M. Vangari, T. Pryor, and L. Jiang, "Supercapacitors: review of materials and fabrication methods," Journal of Energy Engineering, Vol. 139, No. 2, pp. 72-79, Jun 2013. https://doi.org/10.1061/(ASCE)EY.1943-7897.0000102
  15. L. Li, Z. A. Hu, N. An, Y. Y. Yang, Z. M. Li, and H. Y. Wu, "Facile synthesis of $MnO_2$/CNTs composite for supercapacitor electrodes with long cycle stability," The Journal of Physical Chemistry C, Vol. 118, No. 40, pp. 22865-22872, Sep 2014. https://doi.org/10.1021/jp505744p
  16. J. G. Wang, F. Kang, and B. Wei, "Engineering of $MnO_2$-based nanocomposites for high-performance supercapacitors," Progress in Materials Science, Vol. 74, pp. 51-124, Oct 2015. https://doi.org/10.1016/j.pmatsci.2015.04.003
  17. J. Zhi, O. Reiser, and F. Huang, "Hierarchical $MnO_2$ Spheres Decorated by Carbon-Coated Cobalt Nanobeads: Low-Cost and High-Performance Electrode Materials for Supercapacitors," ACS applied materials & interfaces, Vol. 8, No.13, pp. 8452-8459, Mar 2016. https://doi.org/10.1021/acsami.5b12779
  18. M. Huang, F. Li, F. Dong, Y. X. Zhang, and L. L. Zhang, "$MnO_2$-based nanostructures for high-performance supercapacitors," Journal of Materials Chemistry A, Vol. 3, No. 43, pp. 21380-21423, Jul 2015. https://doi.org/10.1039/C5TA05523G
  19. S. Devaraj, and N. Munichandraiah, "Effect of crystallographic structure of $MnO_2$ on its electrochemical capacitance properties," The Journal of Physical Chemistry C, Vol. 112, No. 11, pp. 4406-4417, Feb 2008. https://doi.org/10.1021/jp7108785
  20. A. Taylor, An introduction to X-Ray Metallograph, New York, NY: John Wiley and Sons. Inc., 1945.