Browse > Article
http://dx.doi.org/10.9713/kcer.2018.56.6.901

Preparation and Electrochemical Characterization of Si/C/CNF Anode Material for Lithium ion Battery Using Rotary Kiln Reactor  

Jeon, Do-Man (EG Corporation)
Na, Byung-Ki (Department of Chemical Engineering, Chungbuk National University)
Rhee, Young-Woo (Department of Chemical Engineering and Applied Chemistry, Chungnam National University)
Publication Information
Korean Chemical Engineering Research / v.56, no.6, 2018 , pp. 901-908 More about this Journal
Abstract
Graphite is used as a sample anode active material. However, since the maximum theoretical capacity is limited to $372mA\;h\;g^{-1}$, a new anode active material is required for the development of a high capacity lithium ion battery. The maximum theoretical capacity of Si is $4200mA\;h\;g^{-1}$, which is higher than that of graphite. However, it is not suitable for direct application to the anode active material because it has a volume expansion of 400%. In order to minimize the decrease of the discharge capacity due to the volume expansion, the Si was pulverized by the dry method to reduce the mechanical stress and the volume change of the reaction phase, and the change of the volume was suppressed by coating the carbon layers to the particle size controlled Si particles. And carbon fiber is grown like a thread on the particle surface to control secondary volume expansion and improve electrical conductivity. The physical and chemical properties of the materials were measured by XRD, SEM and TEM, and their electrochemical properties were evaluated. In this study, we have investigated the synthesis method that can be used as anode active material by improving cycle characteristics of Si.
Keywords
Lithium secondary battery; Anode material; Silicon; Pyrolytic carbon coating; Carbon nano fiber;
Citations & Related Records
Times Cited By KSCI : 1  (Citation Analysis)
연도 인용수 순위
1 Dmitri, B. M., Victor, E. B., Rusli., and Cesare, S., "Revising Morphology of <111>-oriented Silicon and Germanium Nanowires," Nano Convergence, 2(16), (2015).
2 Lee, S. W., Lee, H. W., Ryu, I., Nix, W. D., Gao, H. and Cui, Y., "Kinetics and Fracture Resistance of Lithiated Silicon Nanostructure Pairs Controlled by Their Mechanical Interaction," Nat. Commun., 6(7533), (2015).
3 Xin, X., Zhou, X., Wang, F., Yao, X., Xu, X., Zhu, Y. and Liu, Z., "A 3D Porous Architecture of Si/graphene Nanocomposite as High-performane Anode Materials for Li-ion Batteries," J. Mater. Chem., 22(16), 7724-7730(2012).   DOI
4 Wang, B., Li, X., Zhang, X., Luo, B., Jin, M., Liang, M., Dayeh, S. A., Picraux, S. T. and Zhi, L., "Adaptable Silicon-Carbon Nanocables Sandwiched between Reduced Graphene Oxide Sheets as Lithium Ion Battery Anodes," J. Am. Chem. Soc., 7(2), 1437-1445 (2013).
5 Jang, S. M., Miyawaki, J., Tsuji, M., Mochida, I. and Yoon, S. H., "The Preparation of a Novel Si-CNF Composite as an Effective Anodic Material for Lithium-ion Batteries," Carbon, 47(15), 3383-3391(2009).   DOI
6 Li, S. Q., Yan, J. H., Li, R. D., Chi, Y. and Cen, K. F., "Axial Transport and Residence Time of MSW in Rotary Kilns: Part I. Experimental," Powder Technol., 126(3), 217-227(2002).   DOI
7 Jung, D. H. and Chun, Y. N., "Study on the Design of Attached Revolution Body Horizontal Rotary Kiln Dryer and the Optimum Operational Conditions," J. Ind. Eng. Chem., 18(6), 575-579(2007).
8 Eeom, M. J., Hahn, T. J., Lee, H. K. and Choi, S. M., "Performance Analysis Modeling for Design of Rotary Kiln Reactors," Kosco, 18(3), 9-23(2013).
9 Britton, P. F., Sheehan, M. E. and Schneider, P. A., "A Physical Description of Solids Transport in Flighted Rotary Dryers," Powder Technol., 165(2), 153-160(2006).   DOI
10 Dimov, N., Kugino, S. and Yoshio, M., "Carbon-coated Silicon as Anode Material for Lithium Ion Batteries: Advantages and Limitations," Electrochim. Acta, 48(11), 1579-1587(2003).   DOI
11 Kim, T. R., Wu, J. Y., Hu, Q. Li. and Kim, M. S., "Electrochemical Performance of Carbon/Silicon Composite as Anode Materials for High Capacity Lithium Ion Secondary Battery," Carbon Letters, 8(4), 335-339(2007).   DOI
12 Zhang, Z. L., Zhang, M. J., Wang, Y. H., Tan, Q. Q., Lv, X., Zhong, Z. Y., Li, H. and Su, F. B., "Amorphous Silicon-carbon Nanospheres Synthesized by Chemical Vapor Deposition Using Cheap Methyltrichlorosilane as Improved Anode Materials for Li-ion Batteries," Nanoscale, 5(12), 5384-5389(2013).   DOI
13 Jiang, T., Zhang, S. C., Lin, R. X., Liu, G. R. and Liu, W. B., "Electrochemical Characterization of Cellular Si and Si/C Anodes for Lithium Ion Battery," Int. J. Electrochem. Sc., 8, 9644-9651 (2013).
14 Liu, H. P., Qiao, W. M., Zhan, L. and Ling, L. C., "In situ Growth of a Carbon Nanofiber/Si Composite and Its Application in Liion Storage," New Carbon Mater., 24(2), 124-130(2009).   DOI
15 Si, Q., Hanai, K., Ichikawa, T., Hirano, A., Imanishi, N., Takeda, Y. and Yamamoto, O., "A High Performance Silicon/carbon Composite Anode with Carbon Nanofiber for Lithium-ion Batteries," J. Power Sources, 195(6), 1720-1725(2010).   DOI
16 Guo, L. P., Yoon, W. Y. and Kim, B. K., "Fabrication and Characterization of a Silicon-Carbon Nanocomposite Material by Pyrolysis for Lithium Secondary Batteries," Electron Mater. Lett., 8(4), 405-409(2012).   DOI
17 Kim, Y. J., Lee, H. J., Lee, S. W., Cho, B. W. and Park, C. R., "Effects of Sulfuric Acid Treatment on the Microstructure and Electrochemical Performance of a Polyacrylonitrile (PAN)-Based Carbon Anode," Carbon, 43(1), 163-169(2005).   DOI
18 Zhang, Z. L., Wang, Y. H., Ren, W. F., Tan, Q. Q., Chen, Y. F., Li, H., Zhong, Z. Y. and Su, F. B., "Scalable Synthesis of Interconnected Porous Silicon/Carbon Composites by the Rochow Reaction as High-Performance Anodes of Lithium Ion Batteries," Angew. Chem. Int. Edit., 126(20), 5265-5269(2014).   DOI
19 Yoon, S. H., Park, C. W., Yang, H. J., Korai, Y. Z., Mochida, I. S., Baker, R. K. and Rodriguez, N. M., "Novel Carbon Nanofibers of High Graphitization as Anodic Materials for Lithium ion Secondary Batteries," Carbon, 42(1), 21-32(2004).   DOI