• Title/Summary/Keyword: 방사선 방호 효과

Search Result 109, Processing Time 0.026 seconds

Effect of a Herb Mixture (HIM-I) on the Protection of the Hematopoietic-Immune System and Self-renewal Tissues against Radiation Damage (면역조혈계 및 재생조직의 방사선 손상에 대한 생약복합물(HIM-I)의 방호 효과)

  • Park, Hae-Ran;Kim, Sung-Ho;Yee, Sung-Tae;Byun, Myung-Woo;Jo, Sung-Kee
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.34 no.5
    • /
    • pp.605-612
    • /
    • 2005
  • In previous studies, we evaluated the effect of the 6 energy-tonic or blood-building prescriptions of traditional oriental medicine, and observed that Si-Wu-Tang and Bu-Zhong-Yi-Qi-Tang showed high activity in the protection of the gastrointestinal and hematopoietic organs in irradiated mice. But any of these prescriptions did not show a high activity in the activation of the immune cells. We performed this study to design an herb mixture which protects the self-renewal tissues and also promotes recovery of the immune system against radiation damage. In order to meet all the requirements, we designed a new mixture of 3 edible herbs listed in Korean Food Code. The mixture of Angelim gigas radix, Cnidium officinale rhizoma and Paeonia japonica radix was decocted with hot water, and the activities of the water extract (HIM-I) were evaluated. HIM-1 stimulated the immune cells in a much higher extent than the traditional prescriptions, and promoted dramatically the growth of bone marrow stem cells in vitro. Also, HIM-1 protected digestive and hematopoietic organs against radiation as effectively as the 2 prescriptions, Si-Wu-Tang and Bu-Zhong-Yi-Qi-Tang. On the other hand, it showed high in vitro antioxidative activity that might be considered as a mechanism of the protective effects against radiation. Although the detailed mechanisms of those effects remain to be elucidated, these results indicated that HIM-I might be a useful agent for protection and recovery of body from various risk factor as well as radiation, especially since it is a relatively nontoxic natural product.

Induction of Micronuclei in Human and Mouse Lymphocytes Irradiated with Gamma Radiation and Effect of Panax ginseng C.A. Meyer (마우스와 사람 림프구에서 방사선에 의한 미소핵의 형성 및 고려인삼의 효과)

  • Kim, Sung-Ho;Oh, Heon;Lee, Song-Eun;Lee, Yun-Sil;Kim, Tae-Hwan;Jeong, Kyu-Sik;Ryu, Si-Yun
    • Journal of Radiation Protection and Research
    • /
    • v.22 no.3
    • /
    • pp.153-160
    • /
    • 1997
  • The frequencies of ${\gamma}$-ray-induced micronuclei (MN) in cytokinesis-blocked (CB) lymphocytes at several doses were measured in three donors of human and C57BL/6 mice. Measurements performed after irradiation showed a dose-related increases in MN frequency in each of the donors studied. The relative sensitivity of mouse in spleen lymphocytes (SLs) compared with human peripheral blood lymphocytes (PBLs) was estimated by best fitting linear-quadratic model based on the radiation-induced MN data over the range from 0 cGy to 400 cGy. In the case of MN frequency with 0.2 per CB cell, the relative sensitivity of mouse SLs was 1.67. Compared with the radiation-induced MN formation in the PBLs of human, the SLs of mouse were more radiosensitive. Using this MN assay with human PBLs and mouse SLs, studies were performed to determine whether the water fraction of ginseng (Panax ginseng C.A.Meyer) against radiation-induced MN in human PBLs after in vitro irradiation (3Gy) and in SLs of C57BL/6 mice after in vivo irradiation (3Gy). The frequency of MN in human PBLs was reduced by water fraction of ginseng (0.5mg/ml of medium) both pre-and post treatment (p<0.0l) in vitro. In addition, the frequency of MN in mouse SLs was also reduced by pretreatment of ginseng (2mg/ml of drinking water for 7days) in vivo. The data suggested that the ginseng may reduce cell damage caused by ${\gamma}$-rays in vitro and in vivo. Further studies are needed to characterize better the protective nature of ginseng extract, its fractions and compounds.

  • PDF

Effect of Bu-Zhong-Yi-Qi-Tang on B Cell Development (보중익기탕(補中益氣湯)의 B세포 분화 유도 효과)

  • 신성해;채수연;하미혜;조성기;김성호;변명우;이성태
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.33 no.2
    • /
    • pp.271-277
    • /
    • 2004
  • This study was designed to evaluate the effect of Bu -Zhong-Yi-Qi-Tang extracts, a prescription of traditional oriental medicine, on development of the B cells. In the bone marrow cell cultures, progenitors viability, expressions of particular cell- surface proteins and production of immunoglobulins were investigated in the presence of Bu-Zhong-Yi-Qi-Tang extracts. The administration of Bu-Zhong -Yi-Qi-Tang polysaccharide fraction increased the viable cell numbers of the precursor B cells, and elevated expression levels of CD19/CD40 specific for pre-B cells after 10 days culture were demonstrated by flow cytometry analysis. The production of immunoglobulin M in the presence of polysaccharide fraction increased progressively in the culture supernatant, and preferentially induced class switching to IgG1, IgG2a and IgG3. These results indicated that Bu -Zhong -Yi-Qi -Tang strong1y correlated with the development of precursor B cells in the bone marrow cell culture. Therefore the polysaccharide fraction of Bu-Zhong-Yi -Qi-Tang might be a useful radioprotector, especially since it is a relatively non-toxic natural product. Further studies are needed to better characterize the protective nature of Bu-Zhong-Yi -Qi -Tang extract.

Radioprotective Effects of Post-Treatment with Hesperetin against γ-Irradiation-Induced Tissue Damage and Oxidative Stress in BALB/c Mice (BALB/c 마우스에서 감마선 조사로 유도된 조직 손상과 산화적 스트레스에 대한 헤스페레틴 투여 후의 방사선방호 효과)

  • Kang, Jung Ae;Nam, You Ree;Rho, Jong Kook;Jang, Beom-Su;Chung, Young-Jin;Park, Sang Hyun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.5
    • /
    • pp.657-663
    • /
    • 2015
  • Ionizing radiation induces cell damage through formation of reactive oxygen species. The present study was designed to evaluate the protective effects of post-treatment with hesperetin against ${\gamma}$-irradiation-induced cellular damage and oxidative stress in BALB/c mice. Healthy female BALB/c mice were exposed to ${\gamma}$-irradiation and administered hesperetin (25 mg/kg and 50 mg/kg, b.w., orally) for 7 days after 6 Gy of ${\gamma}$-irradiation. Exposure to ${\gamma}$-irradiation resulted in hematopoietic system damage manifested as decreases in spleen indexes and WBC count. In addition, hepatocellular damage characterized by increased levels of aspartate aminoransferase (AST) and alanine aminotransferase (ALT) in plasma. However, post-irradiation treatment with hesperetin provided significant protection against hematopoietic system damage and decreased AST and ALT levels in plasma. The results indicate that ${\gamma}$-irradiation induced increases in lipid peroxidation and xanthine oxidase (XO) as well as decreases in antioxidant enzymes (superoxide dismutase, catalase, and glutathione peroxidase) and glutathione (GSH) in the liver. These effects were also attenuated by post-treatment with hesperetin, which decreased lipid peroxidation and XO as well as increased antioxidant enzymes and GSH. These results show that post-treatment with hesperetin offers protection against ${\gamma}$-irradiation-induced tissue damage and oxidative stress and can be developed as an effective radioprotector during radiotherapy.

The Protective Effect of Red Ginseng(RG) Extracts on the Liver of Mice by X-ray Irradiation and Medication of Paraquat Orally (방사선 조사 및 Paraquat투여를 한 생쥐 간에 대한 홍삼의 보호 효과)

  • Ko, InHo;Yeo, JinDong
    • Journal of the Korean Society of Radiology
    • /
    • v.8 no.3
    • /
    • pp.137-145
    • /
    • 2014
  • The protective effects of Red Ginseng on liver damage induced by linac X-ray and paraquat were investigated. To one group of ICR male mice were given in Red Ginseng(200mg/kg/day for 7days, orally) before 5Gy(1.01Gy/min) dose of linac X-ray irradiation. To another group were given in Red Ginseng (200mg/kg/day for 7days, orally) before paraquat(30mg/kg/day, orally) was Radiation irradiation group were given with saline(0.1ml) and 5Gy. Contrast group were given with saline(0.1ml). The levels of H2O2, catalase and MDA in liver tissue were measured. In Red Ginseng to paraquat(RG+PQ) group and Red Ginseng(RG+Rad) group than irradiation group(Rad), the catalase level were significantly increased, and the catalase levels were appeared at radiation protection. The Red Ginseng was significantly decreased to MDA and H2O2 level to paraquat(RG+PQ) group and Red Ginseng(RG+Rad) group than irradiation group(Rad). Therefore, Red Ginseng was very excellent protector on radiation and paraquat of liver in mice.

Evaluation of Photoneutron Dose in Radiotherapy Room Using MCNPX (MCNPX를 이용한 방사선 치료실의 광중성자 선량 평가)

  • Park, Eun-Tae
    • The Journal of the Korea Contents Association
    • /
    • v.15 no.6
    • /
    • pp.283-289
    • /
    • 2015
  • Recently, high energy photon radiotherapy is a growing trend for increasing therapy results. Commonly, if you use high energy photons above 6~8 MeV nominal accelerator voltage, It lead the photo-nuclear reaction and the generation of photo-neutron are accompanied and these problematic factors are issued in the view of radiation protection. Therefore, in this study analyzed for dose distribution of photo-neutron in radiotherapy room based on MCNPX. As a result, absorbed dose is increased sharply from 10 MV to 12 MV. It was founded that the rapid increasement of photoneutron fluence was related to the absorbed dose at above 10 MV. Also, in case of the recommendation of ICRP 103, the outcome of an exchanged equivalent dose which based on calculated an absorbed dose, showed lower equivalent dose than ICRP 60 by reflecting the contribution of secondary photon for absorbed dose of human body in the low energy band.

Image Evaluation for Optimization of Radiological Protection in CBCT during Image-Guided Radiation Therapy (영상유도 방사선 치료 시 CBCT에서 방사선 방호최적화를 위한 영상평가)

  • Min-Ho Choi;Kyung-Wan Kim;Dong-Yeon Lee
    • Journal of the Korean Society of Radiology
    • /
    • v.17 no.3
    • /
    • pp.305-314
    • /
    • 2023
  • With the development of medical technology and radiation treatment equipment, the frequency of high-precision radiation therapy such as intensity modulation radiation therapy has increased. Image-guided radiation therapy has become essential for radiation therapy in precise and complex treatment plans. In particular, with the introduction of imaging equipment for diagnosis in a linear accelerator, CBCT scanning became possible, which made it possible to calibrate and correct the patient's posture through 3D images. Although more precise reproduction of the patient's posture has become possible, the exposure dose delivered to the patient during the image acquisition process cannot be ignored. Radiation optimization is necessary in the field of radiation therapy, and efforts to reduce exposure are necessary. However, when acquiring 3D CBCT images by changing the imaging conditions to reduce exposure, there should be no image quality or artefacts that would make it impossible to align the patient's position. In this study, Rando phantom was used to scan and evaluate images for each shooting condition. The highest SNR was obtained at 100 kV 80 mA 25 ms F1 filter 180°. As the tube voltage and tube current increased, the noise decreased, and the bowtie filter showed the optimal effect at high tube current. Based on the actual scanned images, it was confirmed that patient alignment was possible under all imaging conditions, and that image-guided radiation therapy for patient alignment was possible under the condition of 70 kV 10 mA 20 ms F0 filter 180°, which showed the lowest SNR. In this study, image evaluation was conducted according to the imaging conditions, and low tube voltage, tube current, and small rotation angle scan are expected to be effective in reducing radiation exposure. Based on this, the patient's exposure dose should be kept as low as possible during CBCT imaging.

The Effect of Ionizing Radiation on the Ultrastructural Changes and Mechanism on the Cytoplasmic Organelles (전리방사선이 세포질 소기관의 미세구조변화와 기전에 미치는 영향)

  • Lee, Moo Seok;Lee, Jong Kyu;Nam, Ji Ho;Ha, Tae Yeong;Lim, Yeong Hyeon;Kil, Sang Hyeong
    • Journal of Life Science
    • /
    • v.27 no.6
    • /
    • pp.708-725
    • /
    • 2017
  • Ionizing radiation is enough energy to interact with matter to remove orbital electrons, neutrons, and protons in the atom. Ionizing radiation like this leads to oxidizing metabolism that alter molecular structure through direct and indirect interactions of radiation with the deoxyribonucleic acid in the nucleus and cytoplasmic organelles or via products of cytoplasm radiolysis. These ionization can result in tissue damage and disruption of cellular function at the molecular level. Consequently, ionizing radiation-induced modifications of ion channels and transporters have been reported. When the harmful effects exceed those of homeostatic biochemical processes, induced biological changes persist and may be propagated to progeny cells. Also, Reactive oxygen species formed on the effect of ionizing radiation can get across into neighboring cells through the cell junctions that are responsible for intercellular chemical communication, and may there bring about changes characteristic to radiation damage. Depending on radiation dose, dose-rate and quality, these protective mechanisms may or may not be sufficient to cope with the stress. This paper briefly reviewed reports on ionization radiation effects on cellular level that support the concept of radiation biology. A better understanding of the biological effects of ionizing radiation will lead to better use of and better protection from radiation.

Dose Distribution Comparison between Arc Radiation Therapy and Tomotherapy (아크치료기법과 토모테라피치료의 선량분포 비교)

  • Kim, Ji-Yoon;Lee, Seung-Chul;Cheon, Geum-Seong;Kim, Young-Jae
    • Journal of the Korean Society of Radiology
    • /
    • v.15 no.5
    • /
    • pp.723-730
    • /
    • 2021
  • This study tries to compare dose distribution between arc radiation therapy and Tomotherapy, which are main radiation therapy modalities. The subjects of this study are lung cancer patients. For planning target volume (PTV), a dose of 60.0 Gy was set as a basis. The PTVmean of Arc was 61.04 Gy, and that of Tomotherapy was 58.50 Gy. The total lung capacities of Arc and Tomotherapy were 3.0 Gy and 4.24 Gy, respectively. The mean heart doses of Arc and Tomotherapy were 0.13 and 0.34, respectively; the mean trachea dose of Arc and Tomotherapy were 1.35 and 2.58, respectively; the mean esophagus dose of Arc and Tomotherapy were 0.41 and 0.86, respectively; the mean spinal cord dose of Arc and Tomotherapy were 3.65 and 4.68, respectively. With regard to the appropriateness of therapeutic effect in DHV, both modalities seemed appropriate. Tomotherapy protected normal tissues better than Arc radiation therapy. In Tomotherapy, patients need to have treatment long in a limited space. If such a point is overcome, Tomotherapy is better. Otherwise, Arc radiation therapy can be applied. This study was conducted with treatment planning images. Therefore, the results of this study are different from actual treatment results. If more research is conducted to overcome the limitation, the effects of radiation therapy are expected to increase further.

The Effect of Adequate Radiation Shield Production for Radiation Worker (방사선 차폐체 제작을 통한 작업종사자 피폭 감소 방안)

  • Kim, Ki;Hong, Gun-Chul;Kwak, In-Suk;Park, Sun-Myung;Choi, Choon-Ki;Seok, Jae-Dong
    • The Korean Journal of Nuclear Medicine Technology
    • /
    • v.14 no.2
    • /
    • pp.41-44
    • /
    • 2010
  • Purpose: Along with recent advances in PET/CT instrumentation and imaging technology, the number of patients has also been steadily increasing. This resulted in the increased radiation exposure to radiation workers in PET/CT rooms. In this study, we installed a radiation shield and investigated whether it could reduce radiation exposure to the workers and thus enhance job satisfaction. Materials and Methods: A radiation shield is composed of 5 cm thick lead and has a structure in which a radiation worker sits and watches a patient through lead glass while injecting radiopharmaceutical to the patient. Quarterly absorbed dose of radiation workers was measured using thermoluminescence dosimeters (TLD) and the results were compared for six months each before and after installation of the radiation shield. Exposure dose was also measured using a pocket dosimeter placed at the same location in the front and the back of the radiation shield. In addition, frequency of use of the shield and job satisfaction of radiation workers were investigated using a survey. Results: Quarterly absorbed dose of radiation workers was 2.70 mSv on average before installation of new radiation shield, whereas that dropped to 2.13 mSv after installation of radiation shield, reducing radiation exposure dose by 21%. Exposure dose on the front side of the shield was 61.2 R, whereas that on the back side of shield was 2.8 R. According to the survey, 85% of workers used the shield and were satisfied with the outcome: each radiation worker made injections to patients average of 6.5 times/day and preferred sitting to standing while injecting radiopharmaceutical to patients. Conclusion: Use of radiation shield reduced the exposure dose of radiation workers, which is the ultimate goal of radiation protection to minimize radiation exposure and is an appropriate method for the improvement of hospital working environment. Furthermore, we found that use of radiation shield not only relieves physical and psychological burden of radiation workers but also enhances job satisfaction. This result indicates that use of radiation shield is important for improvement of the radiation workers' job environment in terms of radiation protection.

  • PDF