본 연구는 Gess-Newsome(1999)의 변형적 관점에서 수학교사의 수학적 이해와 잠재적 학생들을 가르치기 위한 지도방법 간의 관계를 면밀히 이해하고자 중등 수학교사 4명을 대상으로 질적 사례 연구를 수행하였다. 구체적으로, 대수식 쓰기 문제해결을 위한 발달에 핵심적인 이해를 조사 후, 연구 참여자들이 이에 주목하여 문제를 해결하는지 분석하였다. 나아가 대수식 쓰기를 지도하기 위한 수업을 예상하는 과정에서 나타나는 교수적 행동과 수학적 이해 사이의 연관성을 분석하였다. 분석 결과 KDU에 주목한 2명은 대수식 쓰기 문제해결에 성공했으나, 다른 2명은 가분수 상황을 그림으로 나타내거나 상호적 추론을 요구하는 문제를 어려워하였다. 또한 교사들이 구상한 대수식 쓰기를 지도하는 방법에서 확인된 교수적 행동은 그들이 문제해결 과정에서 주목했던 수학적 이해가 투영되어 있었다. 본 연구 결과는 특정 수학 내용에 대한 교사의 KDU와 교수 활동을 위한 지식과의 연결 사례를 제시함으로 교사교육 연구에 기여한다.
'교수학적 내용 지식(Pedagogical Content Knowledge)'의 개념은 '교수활동을 위한 수학 내용 지식(Mathematical Knowledge for Teaching: MKT)'의 핵심 요소들을 밝히기 위한 연구의 일환으로 많은 연구자들에 의해 확장, 발전되어 왔다. 특히 Ball(1993)은 교수활동에서 가시적으로 드러나는 교사가 알아야 할 수학에 관해 초점을 맞추어 왔는데, 본 연구에서는 MKT를 바라보는 또 하나의 대안적 관점으로서 '발달에 핵심적인 이해 (Key Developmental Understanding: KDU)'라는 개념을 제안하고 있다. Simon (2006)은 KDU란 일련의 교수활동을 통해 수행되고 다른 수학적 아이디어의 학습에 기초가 되는 이해 또는 개념이며, '등분할 조작'이 분수 개념의 KDU가 될 수 있음을 주장하였다. 본 연구에서는 예비 초등교사와의 면담을 통하여 '반복 분할 조작'과 '세 수준의 단위 구조'의 구성이 분수 곱셈에 대한 KDU가 될 수 있음을 제시하고 있다.
미국과 유럽의 여러 국가에서 과학의 학문 내 핵심 개념을 중심으로 과학 교육과정을 재구성하려는 노력이 시도되고 있으며 그 중 대표적인 변화가 학습발달과정을 이용한 교육과정을 설계하는 것이다. 학습발달과정은 과학의 핵심 개념과 과학적 활동과정을 논리적이며 단계적으로 정교하게 기술한 틀로서 학생이 학습하는 동안 연속적이며 체계적으로 확립되어 가는 이해의 과정을 설명한다. 미국의 차세대과학기준(NGSS)에서 제시한 생명과학 핵심 개념 중 하나인 생태계에 관하여 학습발달과정을 개발하고 개발된 학습발달과정을 평가하고자 하였다. 이를 위해 학습발달과정에 대한 문헌 연구를 통해 개발 절차를 Development, Assessment, Analysis, Amendment의 네 단계로 설정하고 순차적이며 반복적인 과정을 통해 생태계에 관한 학습발달과정을 개발하였다. 그리고 개발된 학습발달과정의 분석 결과 학습 발달과정에 기반을 둔 평가는 학생의 능력을 파악하는데 신뢰할 수 있는 정보를 제공한다는 결론을 도출하였다. 이를 통해 학습발달과정의 개발 과정에 효과적인 방법으로 핵심 성취기준을 이용한 Framework의 개발, OMC 문항 형식과 Rasch 모델을 이용한 평가와 분석 과정을 제안한다. 또한 경험적으로 검증된 학습발달과정을 이용하여 교육 내용, 교육 방법, 교육 평가가 연계된 교육과정 강화 방안을 제안한다. 국내 학습발달과정에 대한 연구가 부족한 시점에 이 연구를 통해 제안된 학습발달과정 개발 절차를 활용하여 학습발달과정의 개발에 수월성을 제공하고, 개발된 학습발달과정의 적용으로 교육과정의 표준과 방향을 제시할 수 있을 것이다.
수학교육학에서 구성주의는 학습이론에 있어서 핵심적인 이론이라고 할 수 있으며 구성주의에 대한 이해와 적용은 학습자 중심 수학 교수에 있어서 중요하다. 그러나 일부 초등 교사와 예비 초등 교사들은 구성주의를 편협한 시각으로 이해하고 있다. 구성주의가 수학을 흥미롭게 만드는 것을 중요하게 여기는 이론으로 여기고, 수학적인 요소를 고려하지 않은 게임을 만드는 것이 그 예이다. 본 논문에서는 여러 가지 유형의 구성주의, 급진적 구성주의, 비고츠키의 사회적 문화적 발달이론, 사회적 구성이론, 사회적 구성주의가 각기 주장하는 바를 고찰하고 비교하여 구성주의를 이해하는 데에 도움을 주고자 하였다. 논문의 말미에 구성주의가 수학 교육에 시사하는 점이 논의 되었다.
통계학은 학교수학의 일부분으로 포함되어 있지만 전통적인 수학과는 본질적으로 다른 점을 많이 가지고 있다는 연구결과가 보고되어 왔다. 그러나 통계 고유의 특징에 대한 교육 연구, 특히 학교수학의 다른 영역과 차별되는 통계적 개념 이해에 대한 실증적인 자료와 논의가 매우 부족하다. 그러므로 수학적 사고 능력과 통계적 개념 이해 능력이나 통계적 사고 능력 사이의 관계에 대한 논의가 거의 이루어지지 않았다. 이 연구에서는 통계적 사고의 근간을 이루는 몇 가지 핵심 개념들을 추출한 후, 수학적으로 우수한 능력을 갖춘 학생들이 이 통계적 개념들을 이해하는 정도를 조사하였다. 조사 결과, 수학적으로 우수한 능력을 갖춘 학생들이 자연스럽게 발달시킨 개념과 발달시키지 못한 개념이 있었다. 수학적 능력과 통계적 개념 이해 수준 사이에는 낮은 상관관계가 나타났다.
표본(sample)과 표집(sampling)은 통계적 사고의 핵심이며 통계적 소양의 기초로서 통계교육에서 매우 강조되어야 하는 개념이다. 그러나 표본에 관한 선행연구에서는 대개 교과서 분석과 학생의 반응 분석 등에 그치고 있다. 이에 본고에서는 표본 개념에 대한 교수학적 분석의 한 측면으로서 역사적 분석을 시행하였다. 특히, 통계적 소양의 관점에서 이루어진 선행연구를 토대로, 표본 개념을 이해하기 위한 두 핵심요소인 표본대표성과 표집변이성에 기반을 두고 표본 개념의 역사적 발달을 분석하였다. 연구 결과, 표본 개념의 역사적 발달 과정은 표본대표성(sample representativeness)의 이해, 표본 변이(sample variance)의 등장, 표집변이성(sampling variability)의 인식으로 분류할 수 있으며, 특히 표집변이성을 인식하고 이를 제어하는 과정의 중요성을 확인 할 수 있었다. 그러나 표본 개념의 이해 수준에 대한 기존의 선행연구에는 표집변이성 개념이 잘 반영되지 않고 있다. 이를 토대로, 표본 개념의 교수학습에서 표집변이성을 강조해야 하며, 통계적 소양의 함양을 위해 표집변이성의 인식과 해결의 과정을 포함해야 한다는 시사점을 도출하였다.
본 연구는 영재교육 담당교원의 핵심역량에 대한 중요도와 실행도는 어떠한지 알아보는데 목적이 있다. 이를 위해 초등학교 수학과 과학영역의 영재 담당 교원 114명을 대상으로 영재교육 담당교원의 핵심역량에 대한 중요도와 실행도 설문을 실시하였으며 그 결과를 IPA Matrix를 활용하여 분석하였다. 연구결과, 첫째, 영재교육 담당 교원들의 핵심역량에 대한 중요도과 실행도에 있어 유의한 차이가 나타났다. 둘째, IPA Matrix 분석을 살펴보면 핵심역량 중 지식과 이해, 연구와 교수, 열정과 동기, 윤리와 도덕의 역량은 중요도와 실행도 모두 높게 나타났으나, 소통과 실행, 전문성 교육과정개발 역량은 중요도와 실행도 모두 낮게 분포하는 것으로 나타났다. 세부역량별 차이에 있어 인지적 역량군에서는 '영재성 발달에 대한 지식', '질문에 대한 창의적 답변 능력', '교과 간 융합능력', '창의적 문제해결력 증진을 위한 교수능력'과 정의적 역량군에서는 '영재학생의 문제행동파악'이 중요도는 높지만 실행도는 낮은 것으로 나타났다. 셋째, 수학-과학 영역별 핵심역량의 중요도와 실행도를 분석한 결과, 차이가 있는 영역은 '열정과 동기'로 수학에서는 중요도와 실행도 모두 높은 영역에 위치하는 것으로 나타난 반면, 과학에서는 중요도는 낮고 실행도는 높은 영역에 위치하는 것으로 나타났다. 추가적으로 수학영역과 과학영역의 세부역량별 차이를 살펴본 결과, 수학영역에서는 '영재성 발달에 대한 지식'과 '학급에서의 영재아 판별 능력', '정보수집과 활용능력', '다양한 질문에 대한 창의적 답변능력'이 중요도에 비해 실행도가 낮은 영역에 위치하는 것으로 나타났다. 반면 과학영역의 경우는 '해당교과에 대한 고차원적 분석과 종합능력', '해당 교과와 타 교과와의 융합 능력', '영재아에게 적합한 자기주도학습력 향상을 위한 교수법', '영재학생의 문제행동 파악'과 '상담기법을 활용한 영재 상담'이 중요도는 높으나 실행도가 낮은 영역에 위치하는 것으로 나타났다.
등호에 대한 이해는 대수적 사고 발달에 핵심이 되는 바, 본 연구에서는 우리나라 초등학교 2~6학년 학생 695명의 등호 이해가 어느 정도인지 살펴보았다. 연구 결과 전반적으로 정답 반응이 오답 반응에 비하여 높게 드러났으나, 정답 반응 가운데 등호의 관계적 관점이 아닌 계산에 치중하는 등호의 연산적 관점 또한 적지 않게 발견할 수 있었다. 또한 표준 문맥 이외의 등식 문맥에서 등식 구조를 판단하거나 등식을 해결하는데 어려움을 겪고 있으며, 등호 개념에 관한 불안전한 이해를 가지고 있다는 것도 확인할 수 있었다. 본 연구를 통하여 우리나라 초등학교 학생들의 등호 이해의 실태를 파악하고 앞으로의 지도 방향에 대한 시사점을 모색할 수 있을 것이라 기대한다.
노동계급은 다양한 형태의 내적 이질성을 지니고 있으며, 신자유주의 경제정책과 구조조정 과정에서 고용형태에 따른 이질성은 계급균열로 발달하며 노동계급 내적 이질성 논의의 핵심을 구성하게 되었다. 국내의 선행 연구들도 정규직과 비정규직 사이의 물질적 존재조건의 양극화 추세와 사회적 관계의 위계적 배제적 성격을 확인해 주고 있다. 하지만 정규직과 비정규직 사이의 계급균열이 극복되고 노동계급의 내적 통합과 계급형성 과정을 이룰 수 있는지에 대한 논의로 발전하지는 못했다. 본 연구는 계급균열의 극복과 노동계급 통합의 가능성을 검토하기 위해 계급균열의 핵심인 비정규직 노동자 문제를 둘러싼 정규직 비정규직의 의식 수준의 비교연구를 실시한다. 본 연구는 민주노총 공공운수연맹 노동조합원들에 대한 설문조사와 심층면접 연구를 통해 계급균열의 존재를 확인하고 그 원인과 의미를 분석하였다. 첫째, 정규직과 비정규직 노동자들은 비정규직 문제에 대한 인식을 공유하고 있지만 구체적 해결책에 대해서는 입장 차이를 보임으로써 고용형태에 따른 계급균열은 존재하며, 경제위기 이후에도 해소되지 않고 고착화되고 있음을 확인시켜 주었다. 둘째, 고용형태에 따른 계급내적 균열이 비정규직 문제 인식과 추상적 원칙 수준에서는 유의미한 의식 차이를 보이지 않지만 비정규직 문제 해결을 위한 구체적 해결책에 대해 유의미한 입장 차이를 보이는 것은 정규직과 비정규직 사이의 물질적 이해관계의 차이 때문이다. 정규직 노동자들은 비정규직 노동자들의 고용안정성과 노동조건의 개선을 허용하더라도 자신들의 이해관계가 위협받지 않는 수준에서 이루어져야 한다고 보는 것이다. 셋째, 정규직 노동자들이 추상적 원칙 수준에서는 비정규직 노동자들과 동질성을 보이지만 구체적 대안에서 차별성을 보이는 것은 정규직 노동자들의 의식의 양면성을 표현하는 것이며, 물질적 이해관계에 기초한 개인적 수준의 합리성과 계급적 원칙에 기초한 계급적 수준의 합리성이 갈등하고 있는 것이다. 넷째, 정규직 노동자들의 주관성 속에서 개인적 합리성과 계급적 합리성이 갈등하는 정도는 노동조합 가입 여부 및 소속 노동조합의 정체성, 즉 이익집단 정체성 혹은 계급조직 정체성에 의해 결정된다. 여기에 계급조직 정체성을 지닌 민주노조들이 노동계급 계급균열을 극복하고 계급형성을 이루는데 기여할 수 있다는 실천적 함의가 있다.
교사의 수업 전문성 발달의 일환으로, 교사 전문성의 핵심 영역인 수업과 관련된 일련의 활동에 대하여 수업평가 기준을 마련하는 것은 의미 있는 일이라 하겠다. 이러한 취지하에, 좋은 수업, 교사 지식, 수업평가, 수업컨설팅 등에 관한 연구가 한국교육과정 평가원을 통해 지난 십년간 꾸준히 수행되어 왔다. 이러한 연구 결과 중, 교사 지식의 핵심 요소로 '교과 내용 지식', '학습자 이해', '교수 학습 방법 및 평가', '수업 상황' 등의 지식이 제안된 바 있다. 이에 따라, 본 연구에서는 교사의 '학습자 이해' 지식에 초점을 두고 이에 관한 수학 수업에서의 평가 요소를 탐색하고자 한다. 이를 위하여, 본 연구에서는 우선 교사의 학습자 이해 지식에 관한 의미를 재 탐색하고, 또한 학습자 이해와 관련된 몇몇 수업평가에 관한 선행 연구 결과들을 분석하여, 학습자인지 수준, 학습자 오 개념, 학습 동기, 수학적 태도, 학습 방법 등의 5개 영역에 따른 수업평가 요소(안)를 마련하였다.
본 웹사이트에 게시된 이메일 주소가 전자우편 수집 프로그램이나
그 밖의 기술적 장치를 이용하여 무단으로 수집되는 것을 거부하며,
이를 위반시 정보통신망법에 의해 형사 처벌됨을 유념하시기 바랍니다.
[게시일 2004년 10월 1일]
이용약관
제 1 장 총칙
제 1 조 (목적)
이 이용약관은 KoreaScience 홈페이지(이하 “당 사이트”)에서 제공하는 인터넷 서비스(이하 '서비스')의 가입조건 및 이용에 관한 제반 사항과 기타 필요한 사항을 구체적으로 규정함을 목적으로 합니다.
제 2 조 (용어의 정의)
① "이용자"라 함은 당 사이트에 접속하여 이 약관에 따라 당 사이트가 제공하는 서비스를 받는 회원 및 비회원을
말합니다.
② "회원"이라 함은 서비스를 이용하기 위하여 당 사이트에 개인정보를 제공하여 아이디(ID)와 비밀번호를 부여
받은 자를 말합니다.
③ "회원 아이디(ID)"라 함은 회원의 식별 및 서비스 이용을 위하여 자신이 선정한 문자 및 숫자의 조합을
말합니다.
④ "비밀번호(패스워드)"라 함은 회원이 자신의 비밀보호를 위하여 선정한 문자 및 숫자의 조합을 말합니다.
제 3 조 (이용약관의 효력 및 변경)
① 이 약관은 당 사이트에 게시하거나 기타의 방법으로 회원에게 공지함으로써 효력이 발생합니다.
② 당 사이트는 이 약관을 개정할 경우에 적용일자 및 개정사유를 명시하여 현행 약관과 함께 당 사이트의
초기화면에 그 적용일자 7일 이전부터 적용일자 전일까지 공지합니다. 다만, 회원에게 불리하게 약관내용을
변경하는 경우에는 최소한 30일 이상의 사전 유예기간을 두고 공지합니다. 이 경우 당 사이트는 개정 전
내용과 개정 후 내용을 명확하게 비교하여 이용자가 알기 쉽도록 표시합니다.
제 4 조(약관 외 준칙)
① 이 약관은 당 사이트가 제공하는 서비스에 관한 이용안내와 함께 적용됩니다.
② 이 약관에 명시되지 아니한 사항은 관계법령의 규정이 적용됩니다.
제 2 장 이용계약의 체결
제 5 조 (이용계약의 성립 등)
① 이용계약은 이용고객이 당 사이트가 정한 약관에 「동의합니다」를 선택하고, 당 사이트가 정한
온라인신청양식을 작성하여 서비스 이용을 신청한 후, 당 사이트가 이를 승낙함으로써 성립합니다.
② 제1항의 승낙은 당 사이트가 제공하는 과학기술정보검색, 맞춤정보, 서지정보 등 다른 서비스의 이용승낙을
포함합니다.
제 6 조 (회원가입)
서비스를 이용하고자 하는 고객은 당 사이트에서 정한 회원가입양식에 개인정보를 기재하여 가입을 하여야 합니다.
제 7 조 (개인정보의 보호 및 사용)
당 사이트는 관계법령이 정하는 바에 따라 회원 등록정보를 포함한 회원의 개인정보를 보호하기 위해 노력합니다. 회원 개인정보의 보호 및 사용에 대해서는 관련법령 및 당 사이트의 개인정보 보호정책이 적용됩니다.
제 8 조 (이용 신청의 승낙과 제한)
① 당 사이트는 제6조의 규정에 의한 이용신청고객에 대하여 서비스 이용을 승낙합니다.
② 당 사이트는 아래사항에 해당하는 경우에 대해서 승낙하지 아니 합니다.
- 이용계약 신청서의 내용을 허위로 기재한 경우
- 기타 규정한 제반사항을 위반하며 신청하는 경우
제 9 조 (회원 ID 부여 및 변경 등)
① 당 사이트는 이용고객에 대하여 약관에 정하는 바에 따라 자신이 선정한 회원 ID를 부여합니다.
② 회원 ID는 원칙적으로 변경이 불가하며 부득이한 사유로 인하여 변경 하고자 하는 경우에는 해당 ID를
해지하고 재가입해야 합니다.
③ 기타 회원 개인정보 관리 및 변경 등에 관한 사항은 서비스별 안내에 정하는 바에 의합니다.
제 3 장 계약 당사자의 의무
제 10 조 (KISTI의 의무)
① 당 사이트는 이용고객이 희망한 서비스 제공 개시일에 특별한 사정이 없는 한 서비스를 이용할 수 있도록
하여야 합니다.
② 당 사이트는 개인정보 보호를 위해 보안시스템을 구축하며 개인정보 보호정책을 공시하고 준수합니다.
③ 당 사이트는 회원으로부터 제기되는 의견이나 불만이 정당하다고 객관적으로 인정될 경우에는 적절한 절차를
거쳐 즉시 처리하여야 합니다. 다만, 즉시 처리가 곤란한 경우는 회원에게 그 사유와 처리일정을 통보하여야
합니다.
제 11 조 (회원의 의무)
① 이용자는 회원가입 신청 또는 회원정보 변경 시 실명으로 모든 사항을 사실에 근거하여 작성하여야 하며,
허위 또는 타인의 정보를 등록할 경우 일체의 권리를 주장할 수 없습니다.
② 당 사이트가 관계법령 및 개인정보 보호정책에 의거하여 그 책임을 지는 경우를 제외하고 회원에게 부여된
ID의 비밀번호 관리소홀, 부정사용에 의하여 발생하는 모든 결과에 대한 책임은 회원에게 있습니다.
③ 회원은 당 사이트 및 제 3자의 지적 재산권을 침해해서는 안 됩니다.
제 4 장 서비스의 이용
제 12 조 (서비스 이용 시간)
① 서비스 이용은 당 사이트의 업무상 또는 기술상 특별한 지장이 없는 한 연중무휴, 1일 24시간 운영을
원칙으로 합니다. 단, 당 사이트는 시스템 정기점검, 증설 및 교체를 위해 당 사이트가 정한 날이나 시간에
서비스를 일시 중단할 수 있으며, 예정되어 있는 작업으로 인한 서비스 일시중단은 당 사이트 홈페이지를
통해 사전에 공지합니다.
② 당 사이트는 서비스를 특정범위로 분할하여 각 범위별로 이용가능시간을 별도로 지정할 수 있습니다. 다만
이 경우 그 내용을 공지합니다.
제 13 조 (홈페이지 저작권)
① NDSL에서 제공하는 모든 저작물의 저작권은 원저작자에게 있으며, KISTI는 복제/배포/전송권을 확보하고
있습니다.
② NDSL에서 제공하는 콘텐츠를 상업적 및 기타 영리목적으로 복제/배포/전송할 경우 사전에 KISTI의 허락을
받아야 합니다.
③ NDSL에서 제공하는 콘텐츠를 보도, 비평, 교육, 연구 등을 위하여 정당한 범위 안에서 공정한 관행에
합치되게 인용할 수 있습니다.
④ NDSL에서 제공하는 콘텐츠를 무단 복제, 전송, 배포 기타 저작권법에 위반되는 방법으로 이용할 경우
저작권법 제136조에 따라 5년 이하의 징역 또는 5천만 원 이하의 벌금에 처해질 수 있습니다.
제 14 조 (유료서비스)
① 당 사이트 및 협력기관이 정한 유료서비스(원문복사 등)는 별도로 정해진 바에 따르며, 변경사항은 시행 전에
당 사이트 홈페이지를 통하여 회원에게 공지합니다.
② 유료서비스를 이용하려는 회원은 정해진 요금체계에 따라 요금을 납부해야 합니다.
제 5 장 계약 해지 및 이용 제한
제 15 조 (계약 해지)
회원이 이용계약을 해지하고자 하는 때에는 [가입해지] 메뉴를 이용해 직접 해지해야 합니다.
제 16 조 (서비스 이용제한)
① 당 사이트는 회원이 서비스 이용내용에 있어서 본 약관 제 11조 내용을 위반하거나, 다음 각 호에 해당하는
경우 서비스 이용을 제한할 수 있습니다.
- 2년 이상 서비스를 이용한 적이 없는 경우
- 기타 정상적인 서비스 운영에 방해가 될 경우
② 상기 이용제한 규정에 따라 서비스를 이용하는 회원에게 서비스 이용에 대하여 별도 공지 없이 서비스 이용의
일시정지, 이용계약 해지 할 수 있습니다.
제 17 조 (전자우편주소 수집 금지)
회원은 전자우편주소 추출기 등을 이용하여 전자우편주소를 수집 또는 제3자에게 제공할 수 없습니다.
제 6 장 손해배상 및 기타사항
제 18 조 (손해배상)
당 사이트는 무료로 제공되는 서비스와 관련하여 회원에게 어떠한 손해가 발생하더라도 당 사이트가 고의 또는 과실로 인한 손해발생을 제외하고는 이에 대하여 책임을 부담하지 아니합니다.
제 19 조 (관할 법원)
서비스 이용으로 발생한 분쟁에 대해 소송이 제기되는 경우 민사 소송법상의 관할 법원에 제기합니다.
[부 칙]
1. (시행일) 이 약관은 2016년 9월 5일부터 적용되며, 종전 약관은 본 약관으로 대체되며, 개정된 약관의 적용일 이전 가입자도 개정된 약관의 적용을 받습니다.