• Title/Summary/Keyword: 반복 경화

Search Result 116, Processing Time 0.022 seconds

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(I) : Model Development (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(I): 모델 개발)

  • 이진선;김동수
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.47-56
    • /
    • 2003
  • In this paper, the cyclic soil behavior model. which can accommodate the cyclic hardening, was developed by modifying the original parallel IWAN model. In order to consider the irrecoverable plastic strain of soil. the cyclic threshold strain, above which the backbone curve deviates from the original curve, was defined and the accumulated strain was determined by summation of the strains above the cyclic threshold in the stress-strain curve with applying Masing rule on unloading and reloading curves. The isotropic hardening elements are attached to the original parallel IWAN model and the slip stresses in the isotropic hardening elements are shown to increase according to the hardening functions. The hardening functions have a single parameter to account for the cyclic hardening and are defined by the symmetric limit cyclic loading test in forms of accumulated shear strain. The model development procedures are included in this paper and the verifications of developed model are discussed in the companion paper.

Cyclic Hardening and Degradation Effects on Site Response during an Earthquake (지진시 지반의 반복경화/연화 현상에 의한 부지응답 특성 영향 연구)

  • Lee, Jin-Sun
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.12 no.6
    • /
    • pp.65-71
    • /
    • 2008
  • A one-dimensional site response analysis program (KODSAP) was developed using cyclic soil behavior model by using the modified parallel IWAN model. The model is able to predict the cyclic hardening and degradation of soil through the adjustment of the internal slip stresses of its elements beyond the cyclic threshold, and satisfies Bauschinger's effect and the Masing rule in terms of its own behavior characteristics. The program (KODSAP) used the direct integration method in the time domain. The elasticity of the base rock was considered as a viscous damper boundary condition. The effects of cyclic hardening or degradation of soil on site response analysis were evaluated through parametric studies. Three types of analyses were performed to compare the effect of analysis and cyclic parameter on site response. The first type was equivalent linear analysis, the second was nonlinear analysis, and a third was nonlinear analysis using the cyclic hardening or degradation model.

Determination of Chaboche Cyclic Combined Hardening Model for Cracked Component Analysis Using Tensile and Cyclic C(T) Test Data (표준 인장시험과 반복하중 C(T) 시험을 이용한 균열해석에서의 Chaboche 복합경화 모델 결정법)

  • Hwang, Jin Ha;Kim, Hune Tae;Ryu, Ho Wan;Kim, Yun Jae;Kim, Jin Weon;Kweon, Hyeong Do
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.15 no.2
    • /
    • pp.31-39
    • /
    • 2019
  • Cracked component analysis is needed for structural integrity analysis under seismic loading. Under large amplitude cyclic loading conditions, the change in material properties can be complex, depending on the magnitude of plastic strain. Therefore the cracked component analysis under cyclic loading should consider appropriate cyclic hardening model. This study introduces a procedure for determining an appropriate cyclic hardening model for cracked component analysis. The test material was nuclear-grade TP316 stainless steel. The material cyclic hardening was simulated using the Chaboche combined hardening model. The kinematic hardening model was determined from standard tensile test to cover the high and wide strain range. The isotropic hardening model was determined by simulating C(T) test under cyclic loading using ABAQUS debonding analysis. The suitability of the material hardening model was verified by comparing load-displacement curves of cyclic C(T) tests under different load ratios.

Characteristics of Cyclic Drying-Wetting on Strength of Solidified Soil Mixed Porosity Silica (다공성 실리카를 혼합한 경화토의 건습반복 강도특성)

  • Kim, Donggeun;Bang, Seongtaek;Oh, Sewook
    • Journal of the Korean GEO-environmental Society
    • /
    • v.15 no.10
    • /
    • pp.29-34
    • /
    • 2014
  • In order to examine strength properties depended on climate changes of solidified soil amended by porosity silica which enhance harms of cement, this study conducts a wetting and drying repetition test and then, attempts to verify strength properties before and after solidified soil gets environmental influence. Test pieces for the unconfined compression test changed the mixing ratio of solidified soil compared to mixed soil weigh to 5 %, 10 % and 15 %. For each step, it was created by mixing 0.5 %, 1.0 % and 1.5 % of wood chips, and curing period for 7, 14, and 28 days. Then, the wetting and drying repetition process was repeated 0, 3, 6, and 12 cycles to analyze mechanical properties. To also evaluate changes of relative dynamic elastic modulus before and after the wetting and drying, dynamic elastic modulus tests were conducted when each cycle was completed.

A Modified Parallel Iwan Model for Cyclic Hardening Behavior of Sand(II) : Verification (수정 IWAN 모델을 이용한 사질토의 반복경화거동에 대한 연구(II) : 모델 검증)

  • 이진선;김동수;추연욱;윤종구
    • Journal of the Earthquake Engineering Society of Korea
    • /
    • v.7 no.5
    • /
    • pp.57-66
    • /
    • 2003
  • In order to verify the applicability of the developed modified parallel IWAN model. two types of cyclic torsional shear tests were performed using Kum-Kang and Toyoura sands. One was a symmetric-limit loading test and the other was an irregular loading test. Model parameters were derived from the symmetric limit loading tests at various relative densities and confining pressures. The modified parallel IWAN model can predict the cyclic hardening behavior of sands very well as increasing loading cycles in the symmetric-limit tests. Irregular loading tests were performed using the loading shape suggested by Pyke(1979). Cyclic behaviors under irregular loading were simulated using model parameters derived from symmetric limit loading test results of similar loading conditions. The predicted cyclic hardening behaviors under irregular loading matched well with experimental results and the applicability of the proposed model was verified.

Finite Element Simulation of Hysteretic Behavior of Structural Stainless Steel under Cyclic Loading (반복하중을 받는 스테인리스강의 이력거동 해석모델 개발)

  • Jeon, Jun-Tai
    • Journal of the Society of Disaster Information
    • /
    • v.15 no.2
    • /
    • pp.186-197
    • /
    • 2019
  • Purpose: This study intends to develop a nonlinear cyclic plasticity damage model in the framework of finite element formulation, which is capable of taking large deformation effects into account, in order to accurately predict the hysteretic behavior of stainless steel structures. Method: The new cyclic constitutive equations that utilize the combined isotropic-kinematic hardening rule for plastic deformation is incorporated into the damage mechanic model in conjunction with the large strain formulation. The damage growth law is based on the experimental observations that the evolution of microvoids yields nonlinear damage accumulation with plastic deformation. The damage model parameters and the procedure for their identification are presented. Results and Conclusion: The proposed nonlinear damage model has been verified by simulating uniaxial strain-controlled monotonic and cyclic loading tests, and successfully applied to a thin-walled stainless steel pipe subjected to constant and alternating strain-controlled cyclic loadings.

An Evaluation Method of Deformation Moduli using Finite Element Analysis of Cyclic Plate Load Tests (반복재하 평판재하시험의 유한요소해석을 이용한 변형계수의 추정기법)

  • Oh, Seboong;Seo, Wonseok;Kwon, Ohkyun
    • Journal of the Korean GEO-environmental Society
    • /
    • v.8 no.6
    • /
    • pp.61-68
    • /
    • 2007
  • The problem on cyclic plate load tests was analyzed by finite element method using an anisotropic hardening constitutive model. The constitutive model was coded to user subroutine in ABAQUS. Using the result of the analysis, Young's moduli corresponding to various strain levels were evaluated by a back calculation method and were very similar to those of input. On the basis of the back calculation method plate loading tests were verified. As a result, deformation moduli could be evaluated practically from cyclic plate load tests with respect site conditions.

  • PDF

J2-bounding Surface Plasticity Model with Zero Elastic Region (탄성영역이 없는 J2-경계면 소성모델)

  • Shin, Hosung;Oh, Seboong;Kim, Jae-min
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.4
    • /
    • pp.469-476
    • /
    • 2023
  • Soil plasticity models for cyclic and dynamic loads are essential in non-linear numerical analysis of geotechnical structures. While a single yield surface model shows a linear behavior for cyclic loads, J2-bounding surface plasticity model with zero elastic region can effectively simulate a nonlinearity of the ground response with the same material properties. The radius of the yield surface inside the boundary surface converged to 0 to make the elastic region disappear, and plastic hardening modulus and dilatancy define plastic strain increment. This paper presents the stress-strain incremental equation of the developed model, and derives plastic hardening modulus for the hyperbolic model. The comparative analyses of the triaxial compression test and the shallow foundation under the cyclic load can show stable numerical convergence, consistency with the theoretical solution, and hysteresis behavior. In addition, plastic hardening modulus for the modified hyperbolic function is presented, and a methodology to estimate model variables conforming 1D equivalent linear model is proposed for numerical modeling of the multi-dimensional behavior of the ground.

Effect Of Silica Concentration and Crosslinking Agent on Adhesion Properties and Thermal Stability Of UV Cured 2-EHA/AA PSAs (자외선 경화형 2-EHA/AA 점착제의 점착 물성 및 열 안정성에 미치는 실리카 함량 및 경화제 효과)

  • Kim, Ho-Gyum
    • Journal of Adhesion and Interface
    • /
    • v.16 no.2
    • /
    • pp.55-62
    • /
    • 2015
  • It was investigated that the effect of surface modification and concentration of fumed silica on the adhesion properties and thermal stability of 2-EHA/AA pressure sensitive adhesive (PSAs) prepared by UV irradiation. The influence of repeating units of crosslinking agent on PSAs were also studied. From SEM analysis, PSAs synthesized with surface modified silica had finer dispersion of silica particles in polymer matrix due to the interfacial interaction. Results of the study showed that increase in tack and peel strength when under 0.3 wt% of silane treated silica were added in the reaction mixture. The addition of PEGDMA for crosslinking agent offers positive effect on adhesion properties in comparison with PSAs using EGDMA for crosslinker, which may be attributed to high mobility of ethylene oxide repeating units in PEGDMA. From the thermal degradation residue of PSAs, it was revealed that thermal stability was improved with silica addition due to the strong interfacial bonding between silane modified silica and polymer matrix, which may act as a thermal barriers into 2-EHA/AA PSAs.

Effects of Hardening Models on Cyclic Deformation Behavior of Tensile Specimen and Nuclear Piping System (인장 시편 및 원자력 배관계의 반복 변형거동에 미치는 경화 모델의 영향)

  • Jeon, Da-Som;Kang, Ju-Yeon;Huh, Nam-Su;Kim, Jong-Sung;Kim, Yun-Jae
    • Transactions of the Korean Society of Pressure Vessels and Piping
    • /
    • v.13 no.2
    • /
    • pp.67-74
    • /
    • 2017
  • Recently there have been many concerns on structural integrity of nuclear piping under seismic loadings. In terms of failure of nuclear piping due to seismic loadings, an important failure mechanism is low cycle fatigue with large cyclic displacements. To investigate the effects of seismic loading on low cycle fatigue behavior of nuclear piping, the cyclic behavior of materials and nuclear piping needs to be accurately estimated. In this paper, the non-linear finite element (FE) analyses have been carried out to evaluate the effects of three different cyclic hardening models on cyclic behavior of materials and nuclear piping, such as isotropic hardening, kinematic hardening and combined hardening.