• Title/Summary/Keyword: 반도체 Test

Search Result 416, Processing Time 0.024 seconds

Implementation of Impedance Matching Circuit for ATE (고속 ATE 시스템을 위한 임피던스 정합회로 구현)

  • Kim, Jong-Won;Seo, Yong-Bae;Lee, Yong-Sung
    • Journal of the Semiconductor & Display Technology
    • /
    • v.5 no.4 s.17
    • /
    • pp.17-22
    • /
    • 2006
  • In the manufacturing processes of semiconductor, test process is important for quality of products. In the manufacturing process of dynamic memory, memory test is more important. So, automatic test equipment(ATE) is used necessarily. But, according to increase of speed of dynamic memory operation, the rapid test equipment is needed. Impedance matching between ATE and dynamic memory is expected to be an important problem for making a rapid test equipment over 1Gbps. According to increase of speed, inner impedance of ATE also works on important parameter for test. This paper is about the method that is for impedance matching of inner impedance and coaxial cable occurring in manufacturing of ATE. We proved effects of inner impedance by electric theory and verified the method of impedance matching using computer simulation.

  • PDF

Test Algorithm and Measurement of Housekeeping A/D Converter (하우스킵핑 A/D 변환기의 테스트 알고리즘과 측정)

  • 박용수;유흥균
    • Journal of the Semiconductor & Display Technology
    • /
    • v.3 no.4
    • /
    • pp.19-27
    • /
    • 2004
  • The characteristic evaluation of A/D converter is to measure the linearity of the converter. The evaluation of the linearity is to measure the DNL, INL, gain error and offset error in the various test parameters of A/D converter. Generally, DNL and INL are to be measured by the Histogram Test Algorithm in the DSP-based ATE environment. And gain error and offset error are to be measured by the calculation equation of the measuring algorithm. It is to propose the new Concurrent Histogram Test Algorithm for the test of the housekeeping A/D converter used in the CDMA cellular phone. Using the proposed method, it is to measure the DNL, INL, gain error and offset error concurrently and to show the measured results.

  • PDF

Operating Voltage Prediction in Mobile Semiconductor Manufacturing Process Using Machine Learning (기계학습을 활용한 모바일 반도체 제조 공정에서 동작 전압 예측)

  • Inhwan Baek;Seungwoo Jang;Kwangsu Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.1
    • /
    • pp.124-128
    • /
    • 2023
  • Semiconductor engineers have long sought to enhance the energy efficiency of mobile semiconductors by reducing their voltage. During the final stages of the semiconductor manufacturing process, the screening and evaluation of voltage is crucial. However, determining the optimal test start voltage presents a significant challenge as it can increase testing time. In the semiconductor manufacturing process, a wealth of test element group information is collected. If this information can be controlled to predict the test voltage, it could lead to a reduction in testing time and increase the probability of identifying the optimal voltage. To achieve this, this paper is exploring machine learning techniques, such as linear regression and ensemble models, that can leverage large amounts of information for voltage prediction. The outcomes of these machine learning methods not only demonstrate high consistency but can also be used for feature engineering to enhance accuracy in future processes.

  • PDF

Performance Test for the Performance Reliability of the Heat Pipe for Cooling Power Semiconductors (전력반도체 냉각용 히트파이프의 성능안정성 파악을 위한 성능시험)

  • 강환국
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.9 no.3
    • /
    • pp.203-212
    • /
    • 2004
  • The heat pipe for cooling power semiconductor is required no performance changing during the life cycle up to 20 years. For the long reliable performance of the heat pipe, my reasons that has possibility to generate non condensable gases we not allowed. In this research, the maximum heat transport rate and operation characteristics that are related to various geometric and thermal conditions are carried out. Also the test items, specifications and methods to guarantee the long life cycle of the heat pipe for power semiconductor cooling device are provided and the tests are performed.

A study on the circuit design for DC characteristic inspection of semiconductor devices (반도체 소자의 DC 특성 검사용 회로설계에 관한 연구)

  • 김준식;이상신;전병준
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.18 no.1
    • /
    • pp.105-114
    • /
    • 2004
  • In this paper, we design the circuits for DC parameter test of semiconductor devices. The DC parameter tester is the system which inspects the DC parameters of semiconductor devices. In the designed circuits, voltage(current) forcing current(voltage) sensing methods are used to inspect the parameters. The designed circuits are simulated by OR-CAD. The simulation results have good performance.

Development of 3D Inspection Equipment using White Light Interferometer with Large F.O.V. (대시야 백색광 간섭계를 이용한 3차원 검사 장치 개발)

  • Koo, Young Mo;Lee, Kyu Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.22 no.6
    • /
    • pp.694-699
    • /
    • 2012
  • In this paper, semiconductor package inspection results using white light interferometer with large F.O.V., in order to apply semiconductor product inspection process, are shown. Experimental 3D data repeatability test results for the same special bumps of each substrate are shown. Experimental 3D data repeatability test results for all the bumps in each substrate are also shown. Semiconductor package inspection using white light interferometer with large F.O.V. is very important for the fast 3D data inspection in semiconductor product inspection process. This paper is surely helpful for the development of in-line type fast 3D data inspection machine.

Electromigration and Thermomigration Characteristics in Flip Chip Sn-3.5Ag Solder Bump (플립칩 Sn-3.5Ag 솔더범프의 Electromigration과 Thermomigration 특성)

  • Lee, Jang-Hee;Lim, Gi-Tae;Yang, Seung-Taek;Suh, Min-Suk;Chung, Qwan-Ho;Byun, Kwang-Yoo;Park, Young-Bae
    • Korean Journal of Metals and Materials
    • /
    • v.46 no.5
    • /
    • pp.310-314
    • /
    • 2008
  • Electromigration test of flip chip solder bump is performed at $140^{\circ}C$ C and $4.6{\times}10^4A/cm^2$ conditions in order to compare electromigration with thermomigration behaviors by using electroplated Sn-3.5Ag solder bump with Cu under-bump-metallurgy. As a result of measuring resistance with stressing time, failure mechanism of solder bump was evaluated to have four steps by the fail time. Discrete steps of resistance change during electromigration test are directly compared with microstructural evolution of cross-sectioned solder bump at each step. Thermal gradient in solder bump is very high and the contribution of thermomigration to atomic flux is comparable with pure electromigration effect.

Study on the Failure Diagnosis of Robot Joints Using Machine Learning (기계학습을 이용한 로봇 관절부 고장진단에 대한 연구)

  • Mi Jin Kim;Kyo Mun Ku;Jae Hong Shim;Hyo Young Kim;Kihyun Kim
    • Journal of the Semiconductor & Display Technology
    • /
    • v.22 no.4
    • /
    • pp.113-118
    • /
    • 2023
  • Maintenance of semiconductor equipment processes is crucial for the continuous growth of the semiconductor market. The process must always be upheld in optimal condition to ensure a smooth supply of numerous parts. Additionally, it is imperative to monitor the status of the robots that play a central role in the process. Just as many senses of organs judge a person's body condition, robots also have numerous sensors that play a role, and like human joints, they can detect the condition first in the joints, which are the driving parts of the robot. Therefore, a normal state test bed and an abnormal state test bed using an aging reducer were constructed by simulating the joint, which is the driving part of the robot. Various sensors such as vibration, torque, encoder, and temperature were attached to accurately diagnose the robot's failure, and the test bed was built with an integrated system to collect and control data simultaneously in real-time. After configuring the user screen and building a database based on the collected data, the characteristic values of normal and abnormal data were analyzed, and machine learning was performed using the KNN (K-Nearest Neighbors) machine learning algorithm. This approach yielded an impressive 94% accuracy in failure diagnosis, underscoring the reliability of both the test bed and the data it produced.

  • PDF

Test tool for flow and self-leveling characters of coating materials of siloxane polymer used to semiconductor and electronic parts (반도체와 전자 부품에 사용되는 실록산 고분자 코팅물질의 흐름성 및 자기 퍼짐성 측정 시험장치 연구)

  • Kim, Cheol-Hyun;Cho, Hyeon-Mo;Lee, Myong-Euy
    • Analytical Science and Technology
    • /
    • v.25 no.2
    • /
    • pp.127-132
    • /
    • 2012
  • A test tool for self-leveling and flowing characters of coating materials used to semiconductors and electronic parts, especially for protection of LCD and PDP connectors, was designed, and the test tool was evaluated using polymeric siloxane coating materials which have various viscosities. The test results showed that the designed test tool was effective to measure self-leveling and flowing properties of coating materials. Therefore, considering that the viscosity is not directly correlated with self-leveling and flowing properties, we believe that this test tool will be a very useful tool for measurement instead of classical method using viscosities of coating materials. Particularly, the measurement of self-leveling and flowing properties using the test tool would be expected to be used in the area of selecting suitable protective coating materials for LCD (Liquid Crystal Display), PDP (Plasma Display Panel) and semiconductor connection parts.