• Title/Summary/Keyword: 박판 보

Search Result 80, Processing Time 0.022 seconds

Large Deflection Analysis of a Plane Frame with Local Bending Collapse (국부적 굽힘붕괴를 수반하는 평면프레임의 대변형 해석)

  • 김천욱;원종진;강명훈
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.8
    • /
    • pp.1889-1900
    • /
    • 1995
  • In this study, a large deflection analysis of a plane frame composed of a thin-walled tube in investigated. When bent, a thin-walled tube is usually controlled by local buckling and subsequent bending collapse of the section. So load resistance reaches the yield level in a thin-walled rectangular tube. This relationship can be divided into three regimes : elastic, post-buckling and crippling. In this paper, this relationship is theoretically presented to be capable of describing nonlinearities and a stiffness matrix is derived by introducing a compound beam-spring element. A numerical analysis uses a constant incremental energy method and the solution is obtained by modifying stiffness matrix at elastic/inelastic stage. This analytical results, load-deflection paths show a good agreement with the test results.

Adaptive Wavelet-Galerkin Method for Structural Ananlysis (구조해석을 위한 적응 웨이블렛-캘러킨 기법)

  • Kim, Yun-Yeong;Jang, Gang-Won
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.8 s.179
    • /
    • pp.2091-2099
    • /
    • 2000
  • The object of the present study is to present an adaptive wavelet-Galerkin method for the analysis of thin-walled box beam. Due to good localization properties of wavelets, wavelet methods emerge as alternative efficient solution methods to finite element methods. Most structural applications of wavelets thus far are limited in fixed-scale, non-adaptive frameworks, but this is not an appropriate use of wavelets. On the other hand, the present work appears the first attempt of an adaptive wavelet-based Galerkin method in structural problems. To handle boundary conditions, a fictitous domain method with penalty terms is employed. The limitation of the fictitious domain method is also addressed.

A Study on the Progressive Die Development of Sheet Metal Forming Part (박판 포밍제품의 프로그레시브 금형개발에 관한 연구)

  • Sim, Sung-Bo;Lee, Sung-Taeg
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.3 no.4
    • /
    • pp.43-49
    • /
    • 2004
  • The production parts have required multiple processes such as drawing, piercing, blanking and notching etc. are performed with a high production rates in progressive die. In order to prevent the defects of process result, the optimization of strip process layout design, die design, die making, and tryout etc. are needed. According to these factors of die development process, it has been required that the theory and practice of metal working process and its phenomena, die structure, machining conditions for die making, die materials, heat treatment of die components, processing know-how and so on. In this study, we designed and analyzed die components through the carrying out of upper relevant matters also simulated the strip process layout of multiple stage drawing by DEFORM. Especially the result of tryout and its analysis became to the feature of this study with a system of PDDC(Progressive Die design by computer).

  • PDF

Finite Element Analysis of the Thin-Walled Beam with Arbitrary Cross Section (임의 형상의 단면을 갖는 박판보의 유한요소 해석)

  • Yang, Woong-Pill;Sin, Hyo-Chol
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.20 no.1
    • /
    • pp.100-114
    • /
    • 1996
  • In this paper, a new thin-walled beam finite elcment is developed to overmome the difficulties in the analysis of real structures by existing beam elements. The element is formulated by extending Benscoter's assumption and also by adopting the concept of the curvature-based element. It is applicable to the analysis of the beams with arbitrary cross-sectional shapes. The results obtained show that the element is locking-free and the accuracy of the finite element solutions is remarkably improved.

Design Optimization for vehicle Pillar Section Shape Using Simple Finite Element Model (단순유한요소모델을 이용한 차체필라 형상최적설계)

  • 이상범
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.9 no.6
    • /
    • pp.133-139
    • /
    • 2000
  • Vibrational characteristics of the vehicle structure are mainly influenced by the shape of the pillar cross section. In this paper a vehicle structural optimization technique has been developed to investigate a lightweight vehicle structure subject to constraints on natural frequencies in a simple beam-and-shell model. In this technique, the optimization procedures involve two stages. In the first stage, the section procedures involve tow stages. In the first stage, the section properties of beam elements of the vehicle structure has been optimized to have minimum weight while satisfying the constraints of natural frequencies. And, in the second stage, the shape of the cross section of the elements of the structure has been determined.

  • PDF

An Experimental Study on Flexural Strength of Lip-Type Modular Steel Concrete Beam (Lip-Type 모듈형 SC보의 휨내력에 관한 실험적 연구)

  • Ahn, Hyung Joon;Shin, Il Kyoun;Ryu, Soo Hyun
    • Journal of Korean Society of Steel Construction
    • /
    • v.18 no.2
    • /
    • pp.261-270
    • /
    • 2006
  • In this paper, the basic data regarding the application of the MSC (Modular Steel Concrete) beam are presented by comparing the experimental value with the theoretical value, focusing on the bending behavior of the Lip-type MSC beam, which is composed of steel and concrete. Considerable manpower is needed to fabricate the traditional MSC beam, particularly for the tasks of cutting, welding, etc. Because much time is needed to fabricate the traditional SC beam, the prefabrication concept is introduced, easily produce the required size of the SC beam by prefabricating the side module and the lower module, which is made up of a steel sheet. The result indicates that the method of uniting the modules, an d the composition method with concrete, should be improved. The proposed MSC beam can be used as a new structural member by increasing its coherent reinforcement with modules and the composition ratio of steel and concrete through a future study.

Behavior of Horizontally Curved I-Girder Bridges under Seismic Loading (지진하중하에서의 수평곡선I형교의 거동특성)

  • Yoon, Ki Yong;Sung, Ik Hyun;Choi, Jin Yu;Kang, Young Jong
    • Journal of Korean Society of Steel Construction
    • /
    • v.14 no.6
    • /
    • pp.793-802
    • /
    • 2002
  • This study presented a finite element formulation for the dynamic analysis of horizontally curved I-girder bridges. The stiffness and mass matrices of the curved and the straight beam elements are formulated. Each node of both elements has seven degrees of freedom, including the warping degree of freedom. The curved beam element is derived from Kang and Yoo's theory of thin-walled curved beams. The computer program EQCVB has been developed to perform dynamic analyses of various horizontally curved I-girder bridges. The Gupta method is used to solve the eigenvalue problem efficiently, while the Wilson-${\theta}$ method is used for the seismic analysis. The efficiency of EQCVB is demonstrated by comparing solution time with ABAQUS. Using EQCVB, the study is applied to investigate the dynamic behavior of horizontally curved I-girder bridges under seismic loading.

Microstructural Morphology and Bending Performance Evaluation of Molded Microcomposites of Thermotropic LCP and PA6 (액정폴리머/폴리아미드6 미시복합재료의 내부구조 및 기계적 굽힘성능 평가)

  • ;Kiyoshi Takahashi
    • Composites Research
    • /
    • v.12 no.6
    • /
    • pp.53-64
    • /
    • 1999
  • Microstructural morphology and bending strengths of moulded composites of thermotropic liquid crystalline polymer(LCP) and polyamide 6 (PA6) have been studied as a function of epoxy fraction. Injection-moulding of a composite plaque at a temperature below the melting point of the LCP fibrils generated a multi-layered structure: the surface skin layer with thickness of $65\;-\;120{\mu\textrm{m}}$ exhibiting a transverse orientation; the sub-skin layer with an orientation in the flow direction; the core layer with arc-curved flow patterns. The plaques containing epoxy 4.8vol% exhibited superior bending strength and large fracture strain. With an increase of epoxy fraction equal to and beyond 4.8vol%, geometry of LCP domains was changed from fibrillar shape to lamella-like one, which caused a shear-mode fracture. An analysis of the bending strength of the composite plaques by using a symmetric layered model beam suggested that addition of epoxy component altered not only the microstructural geometry but also the elastic moduli and strengths of the respective layers.

  • PDF

동해안 참가자미, Limanda herzensteini의 생식주기

  • 장윤정;이정용;장영진
    • Proceedings of the Korean Aquaculture Society Conference
    • /
    • 2003.10a
    • /
    • pp.53-53
    • /
    • 2003
  • 참가자미, Limanda herzensteini는 가자미목 (Pleuronectiformes), 가자미과 (Pleuronectidae)에 속하며, 우리나라의 동해, 일본의 세토내해 이북, 중국 및 사할린 근해에 분포하는 어종이다. 본 종은 연안정착성 어종으로 동해안에서 낚시 및 저인망 어업에 의해 어획되는 산업적 가치가 큰 고급어종이며, 저수온에 강하여 한류성 해역에서의 양식 가능성이 매우 높다고 할 수 있다. 또한 최근에는 참가자미의 자원량 감소가 두드러지고 있으므로 자원증강이 절실히 요구된다. 이 연구에서는 주 어획지역인 강원도 주문진 인근해역에서 1998년 9월부터 1999년 10월까지 자연산 참가자미의 연간 생식소중량지수의 변화를 조사 하였으며, 조직학적 조사에 의한 생식소 발달과정과 생식주기를 밝혔다. 정소는 정소엽 형태이며, 각각의 정소엽은 여러개의 소낭구조를 가진다. 각 소낭내의 생식세포들은 같은 단계의 발달상태를 보인다. 난소는 원추형의 낭상으로 체강벽에서 연결되는 난소간막에 의해 부착되어 있으며, 내부는 결체성 조직인 다수의 난소박판으로 구성되며, 이곳에서 난원세포가 유래한다. 수컷의 GSI는 1월에 가장 높았으며, 암컷의 GSI는 3월에 가장 높은 값을 보였다. 생식주기는 성장기(6~9월), 성숙기(10~12월), 완숙 및 산란기(1~3월) 그리고 회복 및 휴지기(4~5월)로 나눌 수 있었다. 난모세포의 발달양식은 난군동기발달형에 속하였다.

  • PDF

Whipping analysis of hull girders considering slamming impact loads (슬래밍 충격하중을 고려한 선체 휘핑 해석)

  • Seong-Whan Park;Keun-Bae Lee;Chae-Whan Rim
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.37 no.3
    • /
    • pp.99-109
    • /
    • 2000
  • Elastic dynamic responses analysis program for ship hulls considering slamming impact loads due to the voyage in large amplitude waves is developed. Ship hull structures are modeled by a thin-walled beam model in order to consider effects of shear deformation. The momentum slamming theory is used to derive nonlinear hydrodynamic forces considering intersection between wave particles and ship section. For the validation of the developed computer program, motions of a V-shaped simple section model and S-175 standard container model are calculated and analyzed. In each numerical example, time histories of relative displacement, velocity and vertical bending moment of a ship section are derived, considering the effect of slamming impacts in various wave conditions.ures near the free surface as well as the wake of the hydrofoil.

  • PDF