• Title/Summary/Keyword: 바이오연료

Search Result 682, Processing Time 0.025 seconds

STEAM Education Program using Bio-Energy for 5rd and 6th Graders in Elementary School (초등학교 5-6학년을 위한 바이오에너지를 이용 STEAM 교육프로그램 및 수업 방안)

  • Ko, Yeonghae;Park, Namje
    • Proceedings of the Korea Information Processing Society Conference
    • /
    • 2013.11a
    • /
    • pp.1631-1634
    • /
    • 2013
  • 본 연구에서는 신재생 에너지 Bio-Energy와 STEAM교육의 연구 사례를 살펴보고 이를 토대로 초등학교 5-6학년을 위한 바이오에너지를 이용한 STEAM 교육프로그램과 수업방안을 제시한다. 5-6학년의 지적 발달 수준과 흥미를 고려하여 교육프로그램을 구상하고 이에 따른 교재와 교사용 지도서를 개발하였고, 학습용 미생물 연료전지 교구도 개발하였다. 개발된 교육프로그램의 실효성을 검증하기 위해 제주도내 5-6학년 학생 10명을 대상으로 6차시동안 단계별로 교육을 진행하였다. 향후 추적연구 및 확대 적용이 이루어질 예정이며, 신기술 주제의 STEAM교육을 지도함으로써 좋은 효과를 얻을 수 있을 것으로 기대된다.

Process Development and Analysis of Diorefinery for the Coproduction of 1,3-Butadiene and Butene Oligomer (1,3-부타디엔과 부텐 올리고머 공동 생산을 위한 바이오 정유 공정의 설계 및 분석)

  • AHN, BYEONGCHAN;PARK, JIN-NAM;WON, WANGYUN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.32 no.6
    • /
    • pp.618-635
    • /
    • 2021
  • Environmental issues caused by our dependence on fossil fuels have caused our society to move toward new renewable sources of energy and chemicals. In this study, we develop an integrated process that co-produces butene oligomer (i.e., biofuels) and 1,3-butadiene (i.e., monomer for the production of synthetic rubber). To minimize utility consumption, we conduct heat integration. Then, we conduct a range of techno-economic analysis and life-cycle assessment to investigate economic and environmental feasibility of the proposed process.

A Study on Establishment of Technical Guideline of the Installation and Operation for the Biogas Utilization of Transportation and City Gas: Results of the Field Investigation (고품질화 바이오가스 이용 기술지침 마련을 위한 연구(I): 도시가스 및 수송용 - 현장조사 결과 중심으로)

  • Moon, HeeSung;Kwon, Junhwa;Park, Hoyeon;Jeon, Taewan;Shin, Sunkyung;Lee, Dongjin
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.27 no.1
    • /
    • pp.77-85
    • /
    • 2019
  • Biogasification is a technology that uses organic wastes to reproduce as environmental fuels containing methane gas. Biogasification has attracted worldwide attention because it can produce renewable-energy and stable land treatment with prohibit from landfilling and ocean dumping of organic waste. Biomethane is produced by refining biogas. It is injected into natural gas pipeline or used transportation fuel such as cars and buses. 90 bio-gasification facilities are operating in 2016, and methane gas production is very low due to it is limited to organic wastes such as food waste, animal manure, and sewage sludge. There are seven domestic biomethane manufacturing facilities, and the use of high value-added such as transport fuels and city-gas through upgrading biogas should be expanded. On the other hand, the rapid biogasification of organic wastes in domestic resulted in frequent breakdowns of facilities and low efficiency problems. Therefore, the problem is improving as technical guidance, design and operational technical guidance is developed and field experience is accumulated. However, while improvements in biogas production are being made, there is a problem with low utilization. In this study, the problems of biomethane manufacturing facilities were identified in order to optimize the production and utilization of biogas from organic waste resources. Also, in order to present the design and operation guideline of the gas pretreatment and the upgrading process, we will investigate precision monitoring, energy balance and economic analysis and solutions for on-site problems by facility.

Performance and Emission Studies in a DI Diesel Engine Using Wood Pyrolysis Oil-Bio Diesel Emulsion (목질계 열분해유-바이오 디젤 유상액을 사용하는 직접분사식 디젤 엔진의 엔진성능 및 배기특성에 관한 연구)

  • Lee, Seokhwan
    • Journal of ILASS-Korea
    • /
    • v.17 no.4
    • /
    • pp.197-204
    • /
    • 2012
  • The vast stores of biomass available in the worldwide have the potential to displace significant amounts of fuels that are currently derived from petroleum sources. Fast pyrolysis of biomass is one of possible paths by which we can convert biomass to higher value products. The wood pyrolysis oil (WPO), also known as the bio crude oil (BCO), has been regarded as an alternative fuel for petroleum fuels to be used in diesel engine. However, the use of WPO in a diesel engine requires modifications due to low energy density, high water contents, low acidity, and high viscosity of the WPO. One of the easiest way to adopt WPO to diesel engine without modifications is emulsification of WPO with diesel or bio diesel. In this study, a DI diesel engine operated with diesel, bio diesel (BD), WPO/BD emulsion was experimentally investigated. Performance and gaseous & particle emission characteristics of a diesel engine fuelled by WPO/BD emulsion were examined. Results showed that stable engine operation was possible with emulsion and engine output power was comparable to diesel and bio diesel operation.

Study on Feasibility Biomethane as a Transport Fuel in Korea (국내 바이오메탄의 차량 연료화 타당성 연구)

  • Kim, Jae-Kon;Lee, Donmin;Park, Chunkyu;Lim, Eui Soon;Jung, Choong-Sub;Kim, Ki-Dong;Oh, Youngsam
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2011.05a
    • /
    • pp.174.1-174.1
    • /
    • 2011
  • Biogas production and utilisation is an emerging alternative energy technology. Biogas is produced from the biological breakdown of organic matter through anaerobic digestion. Biogas can be utilized for various energy services such as heating, electricity generation and vehicle fuel. Especially, to be utilized as vehicle fuel, raw biogas needs to be upgraded, that is, mainly the removal of carbon dioxide to increase the methane content, up to more than 95% in some cases, similar to the composition of fossil-based natural gas. Biogas fuelled vehicles can reduce $CO_2$ emission by between 75% and 200% compared with fossil fuels. Biomethane development is largely driven by national initiative and predominately by concerns for national air pollution and waste management. Recently, biogas projects for vehicle fuels by some companies are ongoing and Korea government also announced investment to develop biogas as a transport fuel. Therefore, the aim of this study is to examine the feasibility of biomethane as a transport fuel in Korea. In this study, we investigated quality characteristics, quality standard and upgrading technology to use vehicle fuel of transport sector in Korea.

  • PDF

The Effect of Torrefaction Process on the Structure and Combustion of Biomass Fuel (반탄화 과정이 바이오매스 연료의 구조 및 연소성에 미치는 영향)

  • JEONG, JONG-WON;KIM, GYEONG-MIN;ISWORO, YANUAR YUDHI;JEON, CHUNG-HWAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.3
    • /
    • pp.280-291
    • /
    • 2018
  • Torrefaction is one of the methods to increase combustion calorific value and hydrophobicity of biomass. In this study, the effects of torrefaction on devolatilization, char reactivity and biomass structure were analyzed. Empty fruit bunch (EFB) and Kenaf biomass were used as fuels to be torrefied in the N2 environment at 200, 250 and $290^{\circ}C$. Devolatilization and char kinetics were analyzed by using TGA and biomass structure was investigated through petrography image. The reactivity showed different trends depending on the torrefaction temperature and biomass structure. The herbaceous biomass, Kenaf, was shown as high reactivity and thin wall structure. On the contrary, the woody biomass, EFB, had relatively low reactivity and thick wall structure.

Basic Study on Oversea Biomass Energy Resources 1 - Palm Biomass (해외 바이오매스 에너지자원 확보를 위한 기초조사 1 - 팜 바이오매스)

  • Lee, Hyoung Woo
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.4
    • /
    • pp.439-449
    • /
    • 2014
  • RPS (Renewable Portfolio Standard) has increased wood pellet demand dramatically in recent years in Korea where self-supply rate of wood pellet is not more than 10%. However global production capacity of wood pellet is prospected to be unable to meet the global demand after 2020. Therefore it is urgently needed to develop new sustainable biomass energy resources which can replace wood pellet at lower cost. As a result of this study EFB (empty fruit bunch) and MF (mesocarp fiber), the representative solid palm biomass, are estimated to be generated at the rate of 20 and 28 million tons per year (based on 10% moisture content) in Malaysia and Indonesia, respectively in 2012. Total annual generation rate of EFB and MF is estimated as 48 million tons per year only in Malaysia and Indonesia in 2012. With calorific value of over 90% of wood pellet EFB is expected to be a excellent biomass energy resource which can replace wood pellet. EFB can be utilized as fuel for power generation or industrial purpose. However EFB may not be a proper fuel for domestic and greenhouse heating because of its high ash content.

Process Design and Simulation of Fast Pyrolysis of Brown Seaweed (갈조류 급속열분해 공정의 모사와 설계)

  • Brigljevic, Boris;Woo, Hee Chul;Liu, Jay
    • Clean Technology
    • /
    • v.23 no.4
    • /
    • pp.435-440
    • /
    • 2017
  • Fast pyrolysis of third generation biomass, including micro- and macroalgae for biofuel production has recently been studied and compared experimentally to first- and second-generation biomass. Compared to microalgae, however, process design and simulation study of macroalgae for scale-up has been rare in literature. In this study, we designed and simulated an industrial scale process for producing diesel range biofuel from brown algae based on bench scale experimental data of fast pyrolysis using a commercial process simulator. During process design, special attention was paid to the process design to accommodate the differences in composition of brown algae compared to terrestrial biomass. The entire process of converting 380,000 tonnes of dry brown algae per year into diesel range biofuel was economically evaluated and the minimum (diesel) selling price was also estimated through techno-economic analysis.

Biomethanol Conversion from Biogas Produced by Anaerobic Digestion (혐기소화에 의한 Biogas 생산과 Biomethanol 전환에 관한 고찰)

  • Nam, Jae Jak;Shin, Joung Du;Hong, Seung Gil;Hahm, Hyun Sik;Park, Woo Kyun;So, Kyu Ho
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.93-103
    • /
    • 2006
  • Biogas is a byproduct after anaerobic digestion of organic materials and has been used as an energy source for heating and generating electricity. Demands of methanol for fuel mixed with gasoline and reactant in biodiesel production are steadily being increased. In this review, we summarized recent advancements in direct partial oxidation of methane to methanol with the brief history of methanol synthesis. The steam reforming and the catalytic oxidation of methane to methanol were compared, the former of which are mainly used in industrial scale and the latter in a stage of research and development. On the basis of this review, the possibility of methanol conversion from biogas was proposed in the aspects of the technological feasibility and the economical practicability.

  • PDF

Rapid Characterization and Prediction of Biomass Properties via Statistical Techniques

  • Cho, Hyun-Woo
    • Clean Technology
    • /
    • v.18 no.3
    • /
    • pp.265-271
    • /
    • 2012
  • The use of renewable energies has been required to diminish the dependency on fossil fuels. As one of clean energy sources biomass has been extensively studied because various biomass resources necessitated rapid characterization of their chemical and physical properties in an on-line or real-time basis. For such an analysis near-infrared (NIR) spectroscopy has been successfully applied because of its non-invasive and informative characteristics. In this work, the applicability of nonlinear chemometric techniques based on biomass near infrared (NIR) data is evaluated for the rapid prediction of ash/char contents in different types of biomass. The prediction results of various prediction models and the effect of using preprocessing methods for NIR data are compared using six types of biomass NIR data. The results showed that nonlinear prediction models yielded better prediction performance than linear ones. It also turned out that by adopting the use of proper preprocessing methods the performance of prediction of biomass properties improved.