Browse > Article
http://dx.doi.org/10.7316/KHNES.2021.32.6.618

Process Development and Analysis of Diorefinery for the Coproduction of 1,3-Butadiene and Butene Oligomer  

AHN, BYEONGCHAN (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University)
PARK, JIN-NAM (Department of Nuclear Energy Convergence, Kyungil University)
WON, WANGYUN (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University)
Publication Information
Transactions of the Korean hydrogen and new energy society / v.32, no.6, 2021 , pp. 618-635 More about this Journal
Abstract
Environmental issues caused by our dependence on fossil fuels have caused our society to move toward new renewable sources of energy and chemicals. In this study, we develop an integrated process that co-produces butene oligomer (i.e., biofuels) and 1,3-butadiene (i.e., monomer for the production of synthetic rubber). To minimize utility consumption, we conduct heat integration. Then, we conduct a range of techno-economic analysis and life-cycle assessment to investigate economic and environmental feasibility of the proposed process.
Keywords
Sustainability; Economics; Biofuel; Synthetic rubber; Sensitivity analysis;
Citations & Related Records
연도 인용수 순위
  • Reference
1 S. Sitthisa, T. Pham, T. Prasomsri, T. Sooknoi, R. G. Mallinson, and D. E. Resasco, "Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd-Cu/SiO2 catalysts", Journal of Catalysis, Vol. 280, No, 1, 2011, pp. 17-27, doi: https://doi.org/10.1016/j.jcat.2011.02.006.   DOI
2 S. H. Hazeena, R. Sindhu, A. Pandey, and P. Binod, "Lignocellulosic bio-refinery approach for microbial 2, 3-butanediol production", Bioresource Technology, Vol. 302, 2020, pp. 122873, doi: https://doi.org/10.1016/j.biortech.2020.122873.   DOI
3 Y. Jing, Y. Guo, Q. Xia, X. Liu, and Y. Wang, "Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass", Chem., Vol. 5, No. 10, 2019, pp. 2520-2546, doi: https://doi.org/10.1016/j.chempr.2019.05.022.   DOI
4 J. Han, S. M. Sen, D. M. Alonso, J. A. Dumesic, and C. A. Maravelias, "A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels", Green Chemistry, Vol. 16. No. 2, 2014, pp. 653-661, doi: https://doi.org/10.1039/C3GC41511B.   DOI
5 V. G. Yadav, G. D. Yadav, and S. C. Patankar, "The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-a-vis sustainability and the environment", Clean Techn. Environ. Policy, Vol. 22, 2020, pp. 1757-1774, doi: https://doi.org/10.1007/s10098-020-01945-5.   DOI
6 I. U. Haq, S. H. Li, H. G. Zhen, R. Khan, A. S. Zhang, and Z. P. Zhao, "Highly efficient separation of 1, 3-butadiene from nitrogen mixture by adsorption on highly stable MOF", Chem., Vol. 402, 2020, pp. 125980, doi: https://doi.org/10.1016/j.cej.2020.125980.   DOI
7 W. Zhang, Y. Zhu, S. Niu, and Y, Li, "A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts", Journal of Molecular Catalysis A: Chemical, Vol. 335, No. 1-2, 2011, pp. 71-81, doi: https://doi.org/10.1016/j.molcata.2010.11.016.   DOI
8 A. Kuznetsov, G. Kumar, M. A. Ardagh, M. Tsapatsis, Q. Zhang, and P. J. Dauenhauer, "On the economics and process design of renewable butadiene from biomass-derived furfural", ACS Sustainable Chem. & Eng., Vol. 8, No. 8, 2020, pp. 3273-3282, doi: https://doi.org/10.1021/acssuschemeng.9b06881.   DOI
9 Y. Kim, A. E. Thomas, D. J. Robichaud, K. Iisa, P. C. S. John, B. D. Etz, G. M. Fioroni, A. Dutta, R. L. McCormick, C. Mukarakate, and S. Kim, "A perspective on biomass-derived biofuels: from catalyst design principles to fuel properties", Journal of Hazardous Materials, Vol. 400, 2020, pp. 123198, doi: https://doi.org/10.1016/j.jhazmat.2020.123198.   DOI
10 S. H. Krishna, K. Huang, K. J. Barnett, J. He, C. T. Maravelias, J. A. Dumesic, G. W. Huber, M. De Bruyn, and B. M. Weckhuysen, "Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles", AIChE Journal, Vol. 64, No. 6, 2018, pp. 1910-1922, doi: https://doi.org/10.1002/aic.16172.   DOI
11 K. J. Jung, A. Gaset, and J. Molinier, "Furfural decarbonylation catalyzed by charcoal supported palladium: part IIA continuous process", Biomass, Vol. 16, No. 2, 1988, pp. 89-96, doi: https://doi.org/10.1016/0144-4565(88)90018-2.   DOI
12 C. Godawa, L. Rigal, and A. Gaset, "Palladium catalyzed hydrogenation of furan: optimization of production conditions for tetrahydrofuran", Resources, Conservation and Recycling, Vol. 3, No. 4, 1990, pp. 201-216, doi: https://doi.org/10.1016/0921-3449(90)90018-Y.   DOI
13 O. A. Abdelrahman, D. S. Park, K. P. Vinter, C. S. Spanjers, L. Ren, H. J. Cho, D. G. Vlachos, W. Fan, M. Tsapatsis, and P. J. Dauenhauer, "Biomass-derived butadiene by dehydra-decyclization of tetrahydrofuran", ACS Sustainable Chem. & Eng., Vol. 5, No. 5, 2017, pp. 3732-3736, doi: https://doi.org/10.1021/acssuschemeng.7b00745.   DOI
14 J. Alvarez, M. Amutio, G. Lopez, L. Santamaria, J. Bilbao, and M. Olazar, "Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres", Waste Management, Vol. 85, 2019, pp. 385-395, doi: https://doi.org/10.1016/j.wasman.2019.01.003.
15 S. G. Wettstein, J. Q. Bond, D. M. Alonso, H. N. Pham, A. K. Datye, and J. A. Dumesic, "RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone", Applied Catalysis B: Environmental, Vol. 117-118, 2012, pp. 321-329, doi: https://doi.org/10.1016/j.apcatb.2012.01.033.   DOI
16 G. De Bhowmick, A. K. Sarmah, and R. Sen, "Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products", Bioresource technology, Vol. 247, 2018, pp. 1144-1154, doi: https://doi.org/10.1016/j.biortech.2017.09.163.   DOI
17 A. Narani, P. Coffman, J. Gardner, C. Li, A. E. Ray, D. S. Hartley, A. Stettler, N. M. Konda, B. Simmons, T. R. Pray, and D. Tanjore, "Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply", Bioresource technology, Vol. 243, 2017, pp. 676-685, doi: https://doi.org/10.1016/j.biortech.2017.06.156.   DOI
18 E. C. Gaudino, G. Cravotto, M. Manzoli, and S. Tabasso, "Sono-and mechanochemical technologies in the catalytic conversion of biomass", Chem. Soc. Rev., Vol. 50, 2021, pp. 1785-1812, doi: https://doi.org/10.1039/D0CS01152E.   DOI
19 H. Jeon, K. M. Go, S. Kim, and J. S. Jeong, "A study on the high-efficient bioethanol production using barley", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 6, 2017, pp. 697-703, doi: https://doi.org/10.7316/KHNES.2017.28.6.697.   DOI
20 C. Y. Lee and S. K. Han, "Production of biofuels and bio-chemicals by biorefinery", Trans Korean Hydrogen New Energy Soc, Vol. 27, No. 6, 2016, pp. 702-711, doi: https://doi.org/10.7316/KHNES.2016.27.6.702.   DOI
21 K. Li and R. Ozer, "Vapor-phase decarbonylation process", U.S. Patent, 2012. Retrieved from https://scienceon.kisti.re.kr/srch/selectPORSrchPatent.do?cn=USA2012060165561.
22 Y. Mori, S. Noda, T. Shirai, and A. Kondo, "Direct 1, 3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant", Nat Commun, Vol. 12. No. 2195, 2021, pp. 1-12, doi: https://doi.org/10.1038/s41467-021-22504-6.   DOI
23 F. Pierobon, I. L. Eastin, and I. Ganguly, "Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products", Biotechnology for biofuels, Vol. 11, No. 139, 2018, pp. 1-18, doi: https://doi.org/10.1186/s13068-018-1141-9.   DOI
24 E. V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P. A. Jacobs, and B. F. Sels, "Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene", Chemical Society Reviews, Vol. 43, No. 22, 2014, pp. 7917-7953, doi: https://doi.org/10.1039/C4CS00105B.   DOI
25 Research and Market, "Global butadiene market outlook to 2024 - rapidly increasing automotive production creating a demand for butadiene rubber", Research and Markets, 2019. Retrieved from https://www.globenewswire.com/news-release/2019/03/29/1788422/0/en/Global-ButadieneMarket-Outlook-to-2024-Rapidly-Increasing-Automotive-Production-Creating-a-Demand-for-Butadiene-Rubber.html.
26 IHS Markit, "Global Butadiene Production Overview", Chemical Economics Handbook, 2018. Retrived from https://ihsmarkit.com/products/butadiene-chemical-economics-handbook.html.
27 "Fuel Economy Impact Analysis of RFG", EPA, 1995. Retrieved from https://afdc.energy.gov/files/pdfs/2876.pdf.
28 W. Won, A. H. Motagamwala, J. A. Dumesic, and C. T. Maravelias, "A co-solvent hydrolysis strategy for the production of biofuels: process synthesis and technoeconomic analysis", Reaction Chemistry & Engineering, Vol. 2, No. 3, 2017, pp. 397-405, doi: https://doi.org/10.1039/C6RE00227G.   DOI
29 E. I. Gurbuz, J. M. R. Gallo, D. M. Alonso, S. G. Wettstein, Y. W. Lim, and J. A. Dumesic, "Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone", Angewandte Chemie International Edition, Vol. 52, No. 4. 2013, pp. 1270-1274, doi: https://doi.org/10.1002/anie.201207334.   DOI
30 M. A. Mellmer, C. Sener, J. M. R. Gallo, J. S. Luterbacher, D. M. Alonso, and J. A. Dumesic, "Solvent effects in acid-catalyzed biomass conversion reactions", Angewandte Chemie International Edition, Vol. 53, No. 44, 2014, pp. 11872-11875, doi: https://doi.org/10.1002/anie.201408359.   DOI
31 E. W. Merrow, K. Phillips, and C. W. Myers, "Understanding cost growth and performance shortfalls in pioneer process plants", Rand, 1981.
32 R. E. Davis, N. J. Grundl, L. Tao, M. J. Biddy, E. C. Tan, G. T. Beckham, D. Humbird, D. N. Thompson, and M. S. Roni, "Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts: 2018 biochemical design case update; biochemical deconstruction and conversion of biomass to fuels and products via integrated biorefinery pathways", National Renewable Energy Lab.(NREL), No. BB07, 2013. Retrieved from https://www.nrel.gov/docs/fy14osti/60223.pdf.
33 G. Marcotullio and W. De Jong, "Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions", Green Chemistry, Vol. 12, 2010, pp. 1739-1746, doi: https://doi.org/10.1039/B927424C.   DOI
34 ISO, "Environmental management- life cycle assessment - principles and framework", ISO, 2006. Retrieved from https://www.iso.org/standard/37456.html.
35 D. M. Alonso, S. G. Wettstein, M. A. Mellmer, E. I. Gurbuz, and J. A. Dumesic, "Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass", Energy & Environmental Science, Vol. 6, No. 1, 2013, pp. 76-80, doi: https://doi.org/10.1039/C2EE23617F.   DOI
36 J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, and J. A. Dumesic, "Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels", Science, Vol. 327, No. 5969, 2010, pp. 1110-1114, doi: https://doi.org/10.1126/science.1184362.   DOI
37 Z. Q. Duan and F. Hu, "Highly efficient synthesis of phosphatidylserine in the eco-friendly solvent γ-valerolactone", Green Chemistry, Vol. 14, No. 6, 2012, pp. 1581-1583, doi: https://doi.org/10.1039/C2GC35092K.   DOI
38 C. Schneider, T. Leischner, P. Ryabchuk, R. Jackstell, K. Junge, and M. Beller, "Development of bulk organic chemical processes-history, status, and opportunities for academic research", CCS Chemistry, Vol. 3, No.3, 2021, pp. 512-530, doi: https://doi.org/10.31635/ccschem.021.202000680.   DOI
39 J. Y. Park and J. W. Doe, "Utilization and quality standard of fast pyrolysis bio-oil", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 2, 2020, pp. 223-233, doi: https://doi.org/10.7316/KHNES.2020.31.2.223.   DOI
40 ISO, "Environmental management- life cycle assessment - requirements and guidelines", ISO, 2006. Retrieved from https://www.iso.org/standard/38498.html.
41 S. Farzad, M. A. Mandegari, and J. F. Gorgens, "Integrated techno-economic and environmental analysis of butadiene production from biomass", Bioresource Technology, Vol. 239, 2017, pp. 37-48, doi: https://doi.org/10.1016/j.biortech.2017.04.130.   DOI
42 "Gasoline and Diesel Fuel Update", U.S. Energy Information Administration, 2021. Retrived from https://www.eia.gov/petroleum/gasdiesel/.
43 G. W. Huber and J. He. "Catalytic processes for production of α,ω-diols from lignocellulosic biomass", Univ. of Wisconsin, Madison, 2018, doi: https://doi.org/10.2172/1480118.   DOI
44 R. Davis, L. Tao, C. Scarlata, E. C. D. Tan, J. Ross, J. Lukas, and D. Sexton, "Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and catalytic conversion of sugars to hydrocarbons", National Renewable Energy Lab.(NREL), 2015, doi: https://doi.org/10.2172/1176746.   DOI
45 S. P. DiMartino, J. L. Glazer, C. D. Houston, and M. E. Schott, "Hydrogen/carbon monoxide separation with cellulose acetate membranes", Gas Separation & Purification, Vol. 2, No. 3, 1988, pp. 120-125, doi: https://doi.org/10.1016/0950-4214(88)80027-6.   DOI
46 F. K. Kazi, J. Fortman, R. Anex, G. Kothandaraman, D. Hsu, A. Aden, and A. Dutta, "Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol", National Renewable Energy Lab.(NREL), 2010, doi: https://doi.org/10.2172/982937.   DOI