DOI QR코드

DOI QR Code

Process Development and Analysis of Diorefinery for the Coproduction of 1,3-Butadiene and Butene Oligomer

1,3-부타디엔과 부텐 올리고머 공동 생산을 위한 바이오 정유 공정의 설계 및 분석

  • AHN, BYEONGCHAN (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University) ;
  • PARK, JIN-NAM (Department of Nuclear Energy Convergence, Kyungil University) ;
  • WON, WANGYUN (Department of Chemical Engineering (Integrated Engineering), Kyung Hee University)
  • 안병찬 (경희대학교 화학공학과(융합공학)) ;
  • 박진남 (경일대학교 원자력에너지융합학과) ;
  • 원왕연 (경희대학교 화학공학과(융합공학))
  • Received : 2021.10.15
  • Accepted : 2021.12.09
  • Published : 2021.12.30

Abstract

Environmental issues caused by our dependence on fossil fuels have caused our society to move toward new renewable sources of energy and chemicals. In this study, we develop an integrated process that co-produces butene oligomer (i.e., biofuels) and 1,3-butadiene (i.e., monomer for the production of synthetic rubber). To minimize utility consumption, we conduct heat integration. Then, we conduct a range of techno-economic analysis and life-cycle assessment to investigate economic and environmental feasibility of the proposed process.

Keywords

Acknowledgement

본 연구는 2021년도 정부(과학기술정보통신부)의 재원으로 C1가스리파이너리사업(한국연구재단)의 지원(2015M3D3A1A01064929) 및 교육부의 재원으로 한국기초과학지원연구원 국가연구시설장비진흥센터의 지원을 받은 기초과학연구역량강화 사업 핵심연구지원센터 조성 지원과제에서 광전소재/소자분석 전문센터 조성(2019R1A6C101052)을 통해 수행된 연구결과입니다.

References

  1. C. Schneider, T. Leischner, P. Ryabchuk, R. Jackstell, K. Junge, and M. Beller, "Development of bulk organic chemical processes-history, status, and opportunities for academic research", CCS Chemistry, Vol. 3, No.3, 2021, pp. 512-530, doi: https://doi.org/10.31635/ccschem.021.202000680.
  2. J. Y. Park and J. W. Doe, "Utilization and quality standard of fast pyrolysis bio-oil", Trans Korean Hydrogen New Energy Soc, Vol. 31, No. 2, 2020, pp. 223-233, doi: https://doi.org/10.7316/KHNES.2020.31.2.223.
  3. G. De Bhowmick, A. K. Sarmah, and R. Sen, "Lignocellulosic biorefinery as a model for sustainable development of biofuels and value added products", Bioresource technology, Vol. 247, 2018, pp. 1144-1154, doi: https://doi.org/10.1016/j.biortech.2017.09.163.
  4. A. Narani, P. Coffman, J. Gardner, C. Li, A. E. Ray, D. S. Hartley, A. Stettler, N. M. Konda, B. Simmons, T. R. Pray, and D. Tanjore, "Predictive modeling to de-risk bio-based manufacturing by adapting to variability in lignocellulosic biomass supply", Bioresource technology, Vol. 243, 2017, pp. 676-685, doi: https://doi.org/10.1016/j.biortech.2017.06.156.
  5. E. C. Gaudino, G. Cravotto, M. Manzoli, and S. Tabasso, "Sono-and mechanochemical technologies in the catalytic conversion of biomass", Chem. Soc. Rev., Vol. 50, 2021, pp. 1785-1812, doi: https://doi.org/10.1039/D0CS01152E.
  6. H. Jeon, K. M. Go, S. Kim, and J. S. Jeong, "A study on the high-efficient bioethanol production using barley", Trans Korean Hydrogen New Energy Soc, Vol. 28, No. 6, 2017, pp. 697-703, doi: https://doi.org/10.7316/KHNES.2017.28.6.697.
  7. S. H. Hazeena, R. Sindhu, A. Pandey, and P. Binod, "Lignocellulosic bio-refinery approach for microbial 2, 3-butanediol production", Bioresource Technology, Vol. 302, 2020, pp. 122873, doi: https://doi.org/10.1016/j.biortech.2020.122873.
  8. J. Alvarez, M. Amutio, G. Lopez, L. Santamaria, J. Bilbao, and M. Olazar, "Improving bio-oil properties through the fast co-pyrolysis of lignocellulosic biomass and waste tyres", Waste Management, Vol. 85, 2019, pp. 385-395, doi: https://doi.org/10.1016/j.wasman.2019.01.003.
  9. C. Y. Lee and S. K. Han, "Production of biofuels and bio-chemicals by biorefinery", Trans Korean Hydrogen New Energy Soc, Vol. 27, No. 6, 2016, pp. 702-711, doi: https://doi.org/10.7316/KHNES.2016.27.6.702.
  10. Y. Jing, Y. Guo, Q. Xia, X. Liu, and Y. Wang, "Catalytic production of value-added chemicals and liquid fuels from lignocellulosic biomass", Chem., Vol. 5, No. 10, 2019, pp. 2520-2546, doi: https://doi.org/10.1016/j.chempr.2019.05.022.
  11. Y. Kim, A. E. Thomas, D. J. Robichaud, K. Iisa, P. C. S. John, B. D. Etz, G. M. Fioroni, A. Dutta, R. L. McCormick, C. Mukarakate, and S. Kim, "A perspective on biomass-derived biofuels: from catalyst design principles to fuel properties", Journal of Hazardous Materials, Vol. 400, 2020, pp. 123198, doi: https://doi.org/10.1016/j.jhazmat.2020.123198.
  12. S. H. Krishna, K. Huang, K. J. Barnett, J. He, C. T. Maravelias, J. A. Dumesic, G. W. Huber, M. De Bruyn, and B. M. Weckhuysen, "Oxygenated commodity chemicals from chemo-catalytic conversion of biomass derived heterocycles", AIChE Journal, Vol. 64, No. 6, 2018, pp. 1910-1922, doi: https://doi.org/10.1002/aic.16172.
  13. J. Han, S. M. Sen, D. M. Alonso, J. A. Dumesic, and C. A. Maravelias, "A strategy for the simultaneous catalytic conversion of hemicellulose and cellulose from lignocellulosic biomass to liquid transportation fuels", Green Chemistry, Vol. 16. No. 2, 2014, pp. 653-661, doi: https://doi.org/10.1039/C3GC41511B.
  14. V. G. Yadav, G. D. Yadav, and S. C. Patankar, "The production of fuels and chemicals in the new world: critical analysis of the choice between crude oil and biomass vis-a-vis sustainability and the environment", Clean Techn. Environ. Policy, Vol. 22, 2020, pp. 1757-1774, doi: https://doi.org/10.1007/s10098-020-01945-5.
  15. I. U. Haq, S. H. Li, H. G. Zhen, R. Khan, A. S. Zhang, and Z. P. Zhao, "Highly efficient separation of 1, 3-butadiene from nitrogen mixture by adsorption on highly stable MOF", Chem., Vol. 402, 2020, pp. 125980, doi: https://doi.org/10.1016/j.cej.2020.125980.
  16. A. Kuznetsov, G. Kumar, M. A. Ardagh, M. Tsapatsis, Q. Zhang, and P. J. Dauenhauer, "On the economics and process design of renewable butadiene from biomass-derived furfural", ACS Sustainable Chem. & Eng., Vol. 8, No. 8, 2020, pp. 3273-3282, doi: https://doi.org/10.1021/acssuschemeng.9b06881.
  17. E. V. Makshina, M. Dusselier, W. Janssens, J. Degreve, P. A. Jacobs, and B. F. Sels, "Review of old chemistry and new catalytic advances in the on-purpose synthesis of butadiene", Chemical Society Reviews, Vol. 43, No. 22, 2014, pp. 7917-7953, doi: https://doi.org/10.1039/C4CS00105B.
  18. Research and Market, "Global butadiene market outlook to 2024 - rapidly increasing automotive production creating a demand for butadiene rubber", Research and Markets, 2019. Retrieved from https://www.globenewswire.com/news-release/2019/03/29/1788422/0/en/Global-ButadieneMarket-Outlook-to-2024-Rapidly-Increasing-Automotive-Production-Creating-a-Demand-for-Butadiene-Rubber.html.
  19. IHS Markit, "Global Butadiene Production Overview", Chemical Economics Handbook, 2018. Retrived from https://ihsmarkit.com/products/butadiene-chemical-economics-handbook.html.
  20. Y. Mori, S. Noda, T. Shirai, and A. Kondo, "Direct 1, 3-butadiene biosynthesis in Escherichia coli via a tailored ferulic acid decarboxylase mutant", Nat Commun, Vol. 12. No. 2195, 2021, pp. 1-12, doi: https://doi.org/10.1038/s41467-021-22504-6.
  21. W. Won, A. H. Motagamwala, J. A. Dumesic, and C. T. Maravelias, "A co-solvent hydrolysis strategy for the production of biofuels: process synthesis and technoeconomic analysis", Reaction Chemistry & Engineering, Vol. 2, No. 3, 2017, pp. 397-405, doi: https://doi.org/10.1039/C6RE00227G.
  22. E. I. Gurbuz, J. M. R. Gallo, D. M. Alonso, S. G. Wettstein, Y. W. Lim, and J. A. Dumesic, "Conversion of hemicellulose into furfural using solid acid catalysts in γ-valerolactone", Angewandte Chemie International Edition, Vol. 52, No. 4. 2013, pp. 1270-1274, doi: https://doi.org/10.1002/anie.201207334.
  23. M. A. Mellmer, C. Sener, J. M. R. Gallo, J. S. Luterbacher, D. M. Alonso, and J. A. Dumesic, "Solvent effects in acid-catalyzed biomass conversion reactions", Angewandte Chemie International Edition, Vol. 53, No. 44, 2014, pp. 11872-11875, doi: https://doi.org/10.1002/anie.201408359.
  24. S. Sitthisa, T. Pham, T. Prasomsri, T. Sooknoi, R. G. Mallinson, and D. E. Resasco, "Conversion of furfural and 2-methylpentanal on Pd/SiO2 and Pd-Cu/SiO2 catalysts", Journal of Catalysis, Vol. 280, No, 1, 2011, pp. 17-27, doi: https://doi.org/10.1016/j.jcat.2011.02.006.
  25. W. Zhang, Y. Zhu, S. Niu, and Y, Li, "A study of furfural decarbonylation on K-doped Pd/Al2O3 catalysts", Journal of Molecular Catalysis A: Chemical, Vol. 335, No. 1-2, 2011, pp. 71-81, doi: https://doi.org/10.1016/j.molcata.2010.11.016.
  26. K. J. Jung, A. Gaset, and J. Molinier, "Furfural decarbonylation catalyzed by charcoal supported palladium: part IIA continuous process", Biomass, Vol. 16, No. 2, 1988, pp. 89-96, doi: https://doi.org/10.1016/0144-4565(88)90018-2.
  27. K. Li and R. Ozer, "Vapor-phase decarbonylation process", U.S. Patent, 2012. Retrieved from https://scienceon.kisti.re.kr/srch/selectPORSrchPatent.do?cn=USA2012060165561.
  28. C. Godawa, L. Rigal, and A. Gaset, "Palladium catalyzed hydrogenation of furan: optimization of production conditions for tetrahydrofuran", Resources, Conservation and Recycling, Vol. 3, No. 4, 1990, pp. 201-216, doi: https://doi.org/10.1016/0921-3449(90)90018-Y.
  29. O. A. Abdelrahman, D. S. Park, K. P. Vinter, C. S. Spanjers, L. Ren, H. J. Cho, D. G. Vlachos, W. Fan, M. Tsapatsis, and P. J. Dauenhauer, "Biomass-derived butadiene by dehydra-decyclization of tetrahydrofuran", ACS Sustainable Chem. & Eng., Vol. 5, No. 5, 2017, pp. 3732-3736, doi: https://doi.org/10.1021/acssuschemeng.7b00745.
  30. D. M. Alonso, S. G. Wettstein, M. A. Mellmer, E. I. Gurbuz, and J. A. Dumesic, "Integrated conversion of hemicellulose and cellulose from lignocellulosic biomass", Energy & Environmental Science, Vol. 6, No. 1, 2013, pp. 76-80, doi: https://doi.org/10.1039/C2EE23617F.
  31. S. G. Wettstein, J. Q. Bond, D. M. Alonso, H. N. Pham, A. K. Datye, and J. A. Dumesic, "RuSn bimetallic catalysts for selective hydrogenation of levulinic acid to γ-valerolactone", Applied Catalysis B: Environmental, Vol. 117-118, 2012, pp. 321-329, doi: https://doi.org/10.1016/j.apcatb.2012.01.033.
  32. Z. Q. Duan and F. Hu, "Highly efficient synthesis of phosphatidylserine in the eco-friendly solvent γ-valerolactone", Green Chemistry, Vol. 14, No. 6, 2012, pp. 1581-1583, doi: https://doi.org/10.1039/C2GC35092K.
  33. J. Q. Bond, D. M. Alonso, D. Wang, R. M. West, and J. A. Dumesic, "Integrated catalytic conversion of γ-valerolactone to liquid alkenes for transportation fuels", Science, Vol. 327, No. 5969, 2010, pp. 1110-1114, doi: https://doi.org/10.1126/science.1184362.
  34. R. E. Davis, N. J. Grundl, L. Tao, M. J. Biddy, E. C. Tan, G. T. Beckham, D. Humbird, D. N. Thompson, and M. S. Roni, "Process design and economics for the conversion of lignocellulosic biomass to hydrocarbon fuels and coproducts: 2018 biochemical design case update; biochemical deconstruction and conversion of biomass to fuels and products via integrated biorefinery pathways", National Renewable Energy Lab.(NREL), No. BB07, 2013. Retrieved from https://www.nrel.gov/docs/fy14osti/60223.pdf.
  35. G. Marcotullio and W. De Jong, "Chloride ions enhance furfural formation from d-xylose in dilute aqueous acidic solutions", Green Chemistry, Vol. 12, 2010, pp. 1739-1746, doi: https://doi.org/10.1039/B927424C.
  36. S. P. DiMartino, J. L. Glazer, C. D. Houston, and M. E. Schott, "Hydrogen/carbon monoxide separation with cellulose acetate membranes", Gas Separation & Purification, Vol. 2, No. 3, 1988, pp. 120-125, doi: https://doi.org/10.1016/0950-4214(88)80027-6.
  37. ISO, "Environmental management- life cycle assessment - principles and framework", ISO, 2006. Retrieved from https://www.iso.org/standard/37456.html.
  38. ISO, "Environmental management- life cycle assessment - requirements and guidelines", ISO, 2006. Retrieved from https://www.iso.org/standard/38498.html.
  39. "Fuel Economy Impact Analysis of RFG", EPA, 1995. Retrieved from https://afdc.energy.gov/files/pdfs/2876.pdf.
  40. F. Pierobon, I. L. Eastin, and I. Ganguly, "Life cycle assessment of residual lignocellulosic biomass-based jet fuel with activated carbon and lignosulfonate as co-products", Biotechnology for biofuels, Vol. 11, No. 139, 2018, pp. 1-18, doi: https://doi.org/10.1186/s13068-018-1141-9.
  41. E. W. Merrow, K. Phillips, and C. W. Myers, "Understanding cost growth and performance shortfalls in pioneer process plants", Rand, 1981.
  42. F. K. Kazi, J. Fortman, R. Anex, G. Kothandaraman, D. Hsu, A. Aden, and A. Dutta, "Techno-economic analysis of biochemical scenarios for production of cellulosic ethanol", National Renewable Energy Lab.(NREL), 2010, doi: https://doi.org/10.2172/982937.
  43. S. Farzad, M. A. Mandegari, and J. F. Gorgens, "Integrated techno-economic and environmental analysis of butadiene production from biomass", Bioresource Technology, Vol. 239, 2017, pp. 37-48, doi: https://doi.org/10.1016/j.biortech.2017.04.130.
  44. "Gasoline and Diesel Fuel Update", U.S. Energy Information Administration, 2021. Retrived from https://www.eia.gov/petroleum/gasdiesel/.
  45. R. Davis, L. Tao, C. Scarlata, E. C. D. Tan, J. Ross, J. Lukas, and D. Sexton, "Process design and economics for the conversion of lignocellulosic biomass to hydrocarbons: dilute-acid and enzymatic deconstruction of biomass to sugars and catalytic conversion of sugars to hydrocarbons", National Renewable Energy Lab.(NREL), 2015, doi: https://doi.org/10.2172/1176746.
  46. G. W. Huber and J. He. "Catalytic processes for production of α,ω-diols from lignocellulosic biomass", Univ. of Wisconsin, Madison, 2018, doi: https://doi.org/10.2172/1480118.