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요 약

화석연료에 대한 의존성을 줄이기 위한 대안으로서 재생에너지 사용이 요구되고 있다. 청정에너지원의 하나인 바이오매스

는 그 물성치의 실시간 파악이 중요하기 때문에 다양한 종류의 바이오매스에 대해 널리 연구되어 왔으며, 방법론적인 측면

에서는 비침투성이며 많은 정보를 가진 특징으로 인하여 근적외선 분광법이 성공적으로 적용되었다. 본 논문에서는 여러 

바이오매스 종류에 대한 물성치의 빠른 예측을 위해 근적외선 데이터에 기반한 비선형 방법론의 적용성을 평가하였다. 다
양한 방법론에 기반한 예측 모델들을 근적외선 데이터의 전처리방법과 조합하여 예측 성능을 평가하였다. 바이오매스 물성 

예측 모델의 성능에서는 선형 모델보다는 비선형 모델에서 예측오차가 최소화되었으며 전처리 방법과 결합되었을 때 최적

의 예측결과를 얻을 수 있었다. 

주제어 : 재생에너지, 바이오매스, 비선형 화학계량학 방법론, 근적외선 기반 예측

Abstract : The use of renewable energies has been required to diminish the dependency on fossil fuels. As one of clean energy 
sources biomass has been extensively studied because various biomass resources necessitated rapid characterization of their 
chemical and physical properties in an on-line or real-time basis. For such an analysis near-infrared (NIR) spectroscopy has been 
successfully applied because of its non-invasive and informative characteristics. In this work, the applicability of nonlinear 
chemometric techniques based on biomass near infrared (NIR) data is evaluated for the rapid prediction of ash/char contents in 
different types of biomass. The prediction results of various prediction models and the effect of using preprocessing methods for 
NIR data are compared using six types of biomass NIR data. The results showed that nonlinear prediction models yielded better 
prediction performance than linear ones. It also turned out that by adopting the use of proper preprocessing methods the perfor-
mance of prediction of biomass properties improved.

Keywords : Renewable energy, Biomass, Nonlinear chemometric approaches, Near infrared (NIR)-based prediction with pre-
processing

1. Introduction

Serious environmental concerns and increasing energy costs 
have placed emphasis on the need to develop sustainable renew-
able energies. The use of renewable energies such as biomass, 
wind, solar energies, etc helps us to diminish the heavy reliance 
on fossil fuels[1]. As one of renewable clean energy sources, 
biomass has been extensively studied with the focus placed on 
the conversion of biomass into biofuels. A variety of energy 
needs such as electricity and fuels can be covered by biomass 
because of its availability and its environmental benefits. In ad-
dition, it can be used for other industrial purposes such as the 
production of various biochemicals[1].

The industrial use of various biomass resources for the pro-
duction of biofuels requires rapid characterization of their che-
mical and physical properties. The most useful property in bio- 
fuels is the calorific value, which is affected by many factors 
such as moisture, ash content, and the chemical composition of 
biomass. Irregular or heterogeneous characteristics of biomass 
feedstocks make rapid and reliable assessment and prediction of 
their properties crucial for the production of bio-fuels. However, 
traditional laboratory analysis cannot be a solution due to its 
time consuming, expensive, and off-line nature[2]. 

As one of promising alternatives, near-infrared (NIR) spectro-
scopy approach has been successfully used in many industrial 
fields including biomass as well. NIR spectroscopy is preferred 
because of its non-invasive and informative characteristics[2]. 
Instead of off-line analysis of biomass by conventional labora-
tory approaches, the use of NIR enables us to determine essential 
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quality parameters or properties of biomass in an on-line basis. 
On the other hand, NIR outperformed other popular spectroscopic 
techniques, for example infrared (IR) and Raman spectroscopy, 
in terms of minimum sample preparation required and real time 
responses[3]. 

Prediction of biomass properties using spectroscopic NIR data 
is a multivariate calibration problem, in which chemometric 
approaches have been used including principle component reg-
ression (PCR) and partial least squares (PLS). By applying 
these techniques to spectroscopic data, one can construct pre-
diction models for biomass properties of interest because of the 
simplicity to build or use, accessibility, and speed. PLS and 
PCR are dimension reduction techniques that determine a set 
of latent variables by maximizing the covariance of two vari-
ables, i.e., predictor X of NIR spectra and response Y of 
biomass properties. Thus the relationship between NIR and 
biomass properties can be modeled by such prediction tech-
niques. They have been shown to be useful in various calibra-
tion problems especially for high dimensional noisy data with 
collinearity[2,3]. 

Linear prediction techniques, however, may have some limita-
tions when dealing with nonlinear data such as spectroscopic 
NIR data. Using linear prediction techniques may be misleading 
because nonlinearity of the data cannot be modeled appropriately. 
The selection of linear or nonlinear techniques depends on the 
characteristics of problem and data. Recently, nonlinear kernel 
methods such as kernel PLS (KPLS) and support vector reg-
ression (SVR) have been used to model nonlinear behavior of 
the data[4,5]. Basically, input raw data are first mapped into a 
kernel feature space by a nonlinear mapping function and then 
these mapped data are analyzed. Thus they have the ability to 
model nonlinear relations and lead to a global model to provide 
efficient handling of high dimensional data. 

In this work, the applicability of nonlinear chemometric te-
chniques based on biomass NIR spectra data is assessed for the 
rapid prediction of ash/char contents in different types of biomass. 
The prediction performances of both linear and nonlinear pre-
diction models are compared using six types of biomass NIR 
data. These models seek to find patterns in NIR data that correlate 
with changes in biomass properties. Thus, prior to building pre-
diction models, preprocessing of NIR spectra data is quite im-
portant. because noise or background information need to be 
reduced. The selection of appropriate preprocessing methods is 
also presented in terms of building robust prediction models 
with good predictive ability. This paper is organized as follows. 
Short reviews of linear and nonlinear techniques are given in 
section 2, and then biomass NIR spectra data and details about 
prediction results are presented along with the evaluation of pre-
processing methods. Finally, concluding remarks are given.

2. Methods

2.1. Linear statistical techniques: PCA and PLS
Principal component analysis (PCA) seeks to find eigenvalues 

(λ≥ 0) and the associated eigenvectors v satisfying 

λ〈xk, v〉=〈xk, Cv〉for all k = 1, … , M (1)

where C is the M sample estimate of the covariance matrix and 
〈xk, v〉is the dot product between xk and v[6]. To model a
relationship between independent variables X and dependent va-
riable (s) Y, PLS method seeks to find weight vectors w and 
c that maximizes the sample covariance between t and u[8]. 
Here, t and u are score vectors for X and Y, respectively. By 
regressing X (Y) on t (u), a loading vector p (q) can be obtained 
as follows:

p = (tTt)-1 X Tt and q = (uTu)-1 YTu (2)

Finally, we can find the PLS calibration model as Y = XB + 
G, in which B represents PLS regression coefficients: 

B = XTU(TTXXTU)-1TTY (3)

Similar to PLS algorithm, PCA can be used for solving regre-
ssion problems, called principal component regression (PCR)[3]. 

2.2. Nonlinear statistical techniques
For nonlinear kernel methods to represent nonlinear patterns 

efficiently, the input data are mapped into a high dimensional 
feature space, in which a linear modeling of the data is possible 
as shown in Figure 1[7]. However, it is too difficult and trouble-
some to find the nonlinear mapping explicitly with computational 
problems due to the high dimensionality of the data. Thus, kernel 
functions have been used to overcome these problems[4]. The 
advantage of using kernel trick is that the learning in the feature 
space does not require explicit evaluation of the nonlinear map-
ping function.

Figure 1. Nonlinear modeling in feature space.
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KPLS is the nonlinear kernel version of linear PLS. Similarly 
to KPCA, the introduction of kernel functions enables us to 
avoid both performing explicit nonlinear mappings and computing 
dot products in F. KPLS algorithm is directly derived from 
linear PLS algorithm with some modifications. As a result, re-
gression coefficient matrix of KPLS has the form 

BKPLS = ΦTU(TTKU)-1TTY (4)

The KPLS predictions from training (i.e., modeling building) da-
ta and test (i.e., independent validation) data can be obtained by

Ŷ = ΦBKPLS = KU(TTKU)-1TTY (5)

Ŷ = Φ tBKPLS = KtU(TTKU)-1TTY (6)

where Φ t and Kt are the Φ  and the kernel matrix K for the test 
data points, respectively. 

Similar to KPLS, the basic idea of support vector regression 
(SVR) is to map the data X into the feature space via a nonlinear 
mapping function, and then to do regression in this space. Ma-
thematically, SVR is an extension of support vector machines 
(SVM) technique to regression problems. The details on SVM 
and SVR have been described elsewhere[5,9]. The optimal 
decision function is given by minimizing 1/2‖w‖2 with ine-
quality constraints yi(wΦ(xi) + b)-1≥ 0∀ . By introducing ξ i 
and Lagrangian, corresponding dual problem is given by

Ld = Σα i ― 1/2Σα iαjyiyjΦ (xi)Φ (xj) (7)

And the solution is calculated as w = Σα iyiΦ (xi), in which 
this is performed for support vectors with α i > 0. Similar to 
other nonlinear techniques, the use of a kernel function K (xi, xj) 
allows the computation of dot products in a nonlinear feature 
space F without the use of nonlinear mappings. As shown in 

Figure 2. SVM for two-class separation.

Figure 2, an optimal separating hyperplane can be found which 
maximizes the margin. 

3. Results and Discussion

3.1. NIR data and score plots 
A total of six different biomass feedstocks were prepared for 

the prediction of ash and char contents based on NIR measure-
ment data. For each of three wood species (redoak, hickory, 
and yellow poplar) and three others (switch grass, corn stover, 
and bagasse) three different samples were collected. NIR data 
for these biomass species were obtained with an advanced sp-
ectral devices (ASD) field spectrometer (wavelength range from 
1,000 nm to 2,500 nm, Boulder, USA)[10]. The NIR data was 
reduced by averaging the 1 nm interval spectra to one with 4 
nm intervals. Three spectra for each of 18 samples were obtained, 
and reflectance spectra were converted to absorbance spectra. 
NIR plots of some biomass samples are shown in Figure 3 in-
cluding ash and char content. The measurement of ash content 
was performed via the recommended method of National Re-
sources and Energy Laboratory (NREL) whilst char content was 
measured by thermal gravity analysis. The values for ash and 
char content range from the minimum 0.15 to the maximum 
4.65 and from 11.65 to 21.79, respectively.

Prediction performance based on the biomass NIR data is pre-
sented. First, prior to performing NIR-based prediction of ash 
and char contents, some discrimination results are given here 
to show the advantage of using nonlinear techniques in this 
example. In general, the principal components or score values 
in reduced dimensions can be used to represent a big picture 
of the original data with different biomass groups or patterns. 
In terms of discrimination or classification, such a big picture 

Figure 3. Plots of NIR data and ash/char content. 
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Figure 5. Principal component plots for (a) linear PCA and (b) KPCA.

Figure 4. KPCA for nonlinear data.

helps us to know the difference in NIR spectra data between 
various biomass species. Thus it can show an overall impression 
of how well the six different groups or clusters of the NIR data 
can be discriminated. 

Along with linear PCA as described earlier, nonlinear kernel 
PCA was executed on the NIR spectra data to produce score 
plots. Similar to other nonlinear techniques, nonlinear kernel PCA 
needs to solve the eigenvalue problem

λ〈Φ(xk), v〉=〈Φ(xk), C Fv〉for all k = 1, … , M (8)

where CF is the sample covariance matrix in the feature space. 
Then, there exists coefficients αi, i = 1, … , M, such that v = 


 



α jΦ (xj). Finally combining these equations yields the follo-

wing[4]:
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By applying a kernel function k(x i, x j) =〈Φ(xi), Φ(xj)〉, it 
is neither necessary to know Φ(x) nor we have to calculate 
dot products in F. As shown as a simple example in Figure 
4, the application of KPCA to the original data with curvature 
facilitates better representation of nonlinear patterns of the data. 

Figure 5 shows the score plots of the NIR data using linear 
PCA and nonlinear kernel PCA. The first two or three principal 
components usually can capture most of the variation of the 
data. Thus score plots based on selected principal components 
can facilitate visualization of different groups of data. However, 
linear techniques including linear PCA may have a limitation 
when they are applied to nonlinear data. Figures 5(a) and 5(b) 
show linear PCA and nonlinear kernel PCA score plots obtained 
from the NIR spectra, respectively. In these figures, YP represents 
yellow popular, HK hickory, CS corn stover, SG switchgrass, 
BG bagasse, and RO red oak. As shown in Figure 5(b), more 
clear discrimination of the NIR data between the six biomass 
species is obtained by nonlinear kernel PCA rather than linear 
PCA of Figure 5(a). It seems that visualization and discrimina-
tion is improved by taking into account the nonlinear charac-
teristics of the NIR spectra data. For the nonlinear kernel PCA, 
a radial basis kernel function k(x, y) = exp(―‖x― y‖2 / c was 
used to represent the NIR data. Actually, such a clear discrimi-
nation achieved by the nonlinear kernel PCA leads to less mis-
classification in classifying NIR samples between different bio-
mass species. Here, the execution for the methods of this paper 
including KPCA was performed in an environment of MATLAB 
(MathWorks Inc., Natick, MA).
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3.2. Results of prediction with preprocessing 
To evaluate the prediction performance for the biomass NIR 

data, several calibration models were built using a training data set 
and were tested on a test data set. Total four calibration models 
were constructed based on two linear techniques of PCR and PLS, 
along with two nonlinear techniques of KPLS, and SVR. In this 
work, leave-three-out procedure was executed on all 54 samples 
in order to increase the number of test data sets. While the NIR 
samples were not divided into simple two sets of training (for 
model-building) and test data (for validation), each of all samples 
was included in test data set. That is, three of the 54 samples was 
kept out of model development and predicted by the calibration 
model. Then, this task is repeated until every sample has been 
excluded only once. To compare the predictive abilities of the pre-
diction models, root mean squared error for prediction (RMSEP) 
value was used and calculated based on the test data sets.

The prediction results for the biomass NIR data are summari-
zed in Table 1 (for ash content) and Table 2 (for char content). 
In these tables, the influence of using different preprocessing 
methods on the prediction performance for ash and char contents 
is presented. In general, the optimum preprocessing method for 
NIR spectra depends on the type of data, and sample charac-
teristics. Thus, there is no general rule for choosing the adequate 
pre-processing method. As shown in the tables, this work listed 
the effect of commonly used preprocessing methods such as no 
preprocessing (denoted as M1), multiplicative scatter correction 
followed by mean centering (denoted as M2), mean centering 
followed by orthogonal signal correction (denoted as M3), and 
second order derivative Savitsky-Golay followed by orthogonal 
signal correction (denoted as M4). These preprocessing methods 
for spectra data are a set of mathematical procedures on spectra. 

Table 1. 3-Fold cross validation RMSEP results for ash content
RMSEP for ash content

M1 M2 M3 M4
PCR 2.15 2.32 1.44 1.39
PLS 1.98 2.06 1.21 1.16

Kernel PLS 1.10 1.33 0.70 0.67
Support vector regression 1.12 1.31 0.69 0.65

Table 2. 3-Fold cross validation RMSEP results for char content
RMSEP for char content

M1 M2 M3 M4
PCR 4.91 5.29 4.25 4.03
PLS 4.68 4.72 3.59 3.48

Kernel PLS 3.72 4.05 2.10 1.98
Support vector regression 3.60 3.86 2.05 1.97

For example, multiplicative scatter correction averages the sp-
ectra first, and each individual spectrum is regressed by partial 
least squares to the total average. The details about the prepro-
cessing methods are out of scope of this work, and can be-
regerred elsewhere to other papers[2,11]. 

As shown in Table 1, RMSEP result for ash content using 
the two nonlinear calibration models show a significantly better 
prediction performance in that they produced less RMSEP 
values than linear models, irrespective of the preprocessing me-
thods used. The linear calibration models using M4, for example, 
showed RMSEP values of 1.39 (for PCR) and 1.16 (for PLS) 
whilst the nonlinear models showed RMSEP values of 0.67 (for 
KPLS) and 0.65 (for SVR). Such observations can also be found 
from average RMSEP values calculated over the preprocessing 
methods (M1-M4). Average RMSEP values for each of the cali-
bration models are obtained for the four preprocessing methods: 
1.83 (PCR), 1.60 (PLS), 0.95 (KPLS), and 0.94 (SVR). The 
nonlinear SVR calibration model produced the lowest average 
RMSEP value of 0.94. It should be noted that, when compared 
to SVR, the KPLS model yielded similar good prediction per-
formance with average RMSEP value of 0.95. Overall, the SVR 
prediction model with M4 showed the best prediction perfor-
mance for ash content having the minimum RMSEP value (i.e., 
0.65). The effect of using different preprocessing methods on 
prediction performance can be observed from Table 1. The M3 
and M4 preprocessing methods produced similar RMSEP val-
ues. On the contrary, the use of M1 and M2 led to higher pre-
diction errors for the four prediction models. This observation 
can be found by comparing average RMSEP values of each of 
the four preprocessing methods. Similar to the average RMSEP 
stated before, average RMSEP values calculated over the four 
prediction models were obtained from Table 1: 1.59 (M1), 1.76 
(M2), 1.01 (M3), and 0.97 (M4). 

The predicted values of ash content for the test data were 
plotted against those observed in order to visualize the predictive 
performance of the prediction models. As shown in Figure 6, 
prediction results based on the three prediction models (i.e., 
PLS, KPLS, and SVR) are displayed for a comparison purpose, 
in which the preprocessing method of M4 was used. As expected 
from the RMSEP results, low prediction errors resulted in little 
dispersion around diagonal lines. Compared to the plot of the 
linear PLS model, the predicted vs. observed plots of the two 
nonlinear prediction models showed less prediction errors. In 
such plots, the data points should fall on the diagonal. It means 
that the prediction model predicts new test data perfectly. In 
this respect, it is observed that the two nonlinear prediction mo- 
dels have a better predictive ability than the linear PLS model. 
Actually, they produced reliable predicted values closer to the 
diagonal line than the linear PLS model. 
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Figure 6. Measured vs. predicted plots for ash content (%) based on 
(a) linear PLS (b) KPLS and (c) SVR. 

Similar to the prediction results for ash content, those for 
char content were listed in Table 2. Overall prediction perfor-
mance for char content showed that the two nonlinear prediction 
models outperformed the two linear models. Based on average 
RMSEP values calculated over the preprocessing methods, the 
SVR (KPLS) prediction model produced minimum average 
RMSEP value of 2.87 (2.96). However, average RMSEP va-
lues for the linear calibration models of PCR and PLS are 
4.62 and 4.12, respectively. The best prediction results were 
obtained when using nonlinear prediction models with M4: 1.97 
for SVR plus M4 and 1.98 for KPLS plus M4. In terms of 
the effect of the preprocessing methods used, in addition, ave-
rage RMSEP values calculated over the four prediction models 
were obtained from Table 2: 4.23 (M1), 4.48 (M2), 3.00 (M3), 
and 2.87 (M4). 

It is interesting to note that the predicted errors of M2 are 
higher than those of M1 (i.e., raw data used without preprocessing) 
: average RMSEP value 4.23 of M1 vs. 4.48 of M2. This trend 
is similar with the case of ash content. As listed in Table 1, 
average RMSEP value of M1 (1.59) is lower than M2 (1.76) for 
the ash prediction case. The use of preprocessing prior to buil-
ding prediction models can be helpful in most of cases, but there 
may be a tradeoff between noise reduction and information loss 
[12]. On the other hand, it is worth noting that the RMSEP results 
illustrate the differences between linear techniques of the PCR 
and PLS. As shown in the two RMSEP tables, PLS yielded less 
prediction errors for ash and char contents than PCR. In fact, the 
PLS algorithm was known to be more efficient in extracting the 
information of NIR spectra data X that is strongly correlated with 
Y[2]. For a graphical comparison purpose, Figure 7 shows the plots 
of predicted vs. observed for biomass test data using different pre-
diction models. As mentioned before, the nonlinear prediction mo-
dels for char content have little dispersion around diagonal lines. 

4. Concluding Remarks

In this work, various prediction models coupled with different 
preprocessing methods were evaluated to predict biomass pro-
perties of ash and chart contents by NIR spectra data. The com-
monly used linear prediction techniques were applied and com-
pared with nonlinear approaches. In addition, the score plots 
using linear and nonlinear PCA were constructed to facilitate 
visualization of different groups of biomass NIR data. As a result, 
visualization and discrimination between different biomass spe-
cies was improved by adopting nonlinear PCA. In terms of pre-
diction performance, the best prediction model was obtained 
when using nonlinear prediction models of SVR with a specific 
preprocessing method of M4. That prediction models with M4 
produced the lowest prediction errors. In term of the effect of 
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Figure 7. Measured vs. predicted plots for char content (%) based on 
(a) linear PLS (b) KPLS and (c) SVR. 

using preprocessing methods for NIR data, preprocessing me-
thods are a set of mathematical procedures which help to reduce 
noise of spectra data and increases signal from chemical infor-
mation. Thus the use of preprocessing for spectra data including 
NIR usually results in a robust prediction model. However, pre-
dictive ability of a prediction model may deteriorate when there 
is an inappropriate selection of a preprocessing method. Thus, 
the optimal selection of preprocessing for a specific problem will 
require a trial and error process. The on-line prediction of biomass 
properties using NIR data with such a small error could be very 
beneficial for the production of bio-fuels. Also reliable know-
ledge of the quality of biomass will allow to run the production 
on tighter specifications and it will help reducing some of the 
raw material wastes. 
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