• Title/Summary/Keyword: 바이오디젤 생산성

Search Result 100, Processing Time 0.031 seconds

Current status on the development and commercialization of GM plants (국내·외 GM식물의 개발 및 산업화 현황)

  • Lee, Shin-Woo
    • Journal of Plant Biotechnology
    • /
    • v.37 no.3
    • /
    • pp.305-312
    • /
    • 2010
  • During a last decade, the introduced traits in commercialized GM crops have been diversified from a simple trait such as herbicide resistance gene or insectresistance gene which are related to the crop production into more complicated traits such as modification of fatty acid or essential amino acid composition, modified coloring pattern of flower. In addition, it was investigated that several other GM crops bearing more refined traits expected to lead next generation are also awaiting for risk assessment (RA) or under field test for the preparation of RA in the near future. These GM crops include abiotic stress resistance including drought or cold, increased biomass, production of bioethanol or diesel, production of pharmaceuticals or functional materials for industrial. In particular, in 2008 and 2009, it was reported that the highest number of GM crops for molecular farming are under developed in laboratory or green house level in all the world. Likewise, in Korea, 171 events from 49 plant species are under developed to introduce several important traits. At present, about 10 events are under field test to select elite lines for RA application. For the first time, herbicide resistance turfgrass developed by Korean research team has been submitted for RA and currently under requested for additional data. Moreover, GM rice resistant to leaf roll (folder) disease is expected as a next event to be submitted for RA application.

Biodiesel production using lipase producing bacteria isolated from button mushroom bed (양송이 배지에서 유래한 Lipase 생산균을 이용한 바이오디젤 생산)

  • Kim, Heon-Hee;Kim, Chan-Kyum;Han, Chang-Hoon;Lee, Chan-Jung;Kong, Won-Sik;Yoon, Min-Ho
    • Journal of Mushroom
    • /
    • v.13 no.1
    • /
    • pp.56-62
    • /
    • 2015
  • A lipase producing bacterium was isolated from button mushroom bed, which showing high clear zone on agar media containing Tributyrin as the substrate. The strain was identified as Burkholderia cepacia by analysis of 16S rDNA gene sequence. Crude lipase (CL) was partially purified from 70% ammonium sulfate precipitation using the culture filtrate of B. cepacia. Immobilized lipases were prepared by cross-linking method with CL from B. cepacia and Novozyme lipase (NL) onto silanized Silica-gel as support. Residual activitiy of the immobilized CL (ICL) and immobilized NL (INL) was maintained upto 61% and 72%, respectively. Biodiesel (Fatty acid methyl ester, FAME) was recovered by transesterification and methanolysis of Canola oil using NaOH, CL and ICL as the catalysts to compare the composition of fatty acids and the yield of FAME. Total FAME content was NaOH $781mg\;L^{-1}$, CL $681mg\;L^{-1}$ and ICL $596mg\;L^{-1}$, in which the highest levels of FAME was observed to 50% oleic acid (C18:1) and 22% stearic acid (C18:0). In addition, the unsaturated FAME (C18:1, C18:2) decreased, while saturated FAME (C16:0, C18:0) increased according to increasing the reaction times with both CL and ICL, supporting CL possess both transesterification and interesterification activity. When reusability of ICL and INL was estimated by using the continuous reaction of 4 cycles, the activity of ICL and INL was respectively maintained 66% and 79% until the fourth reaction.

Development of Economic Culture System Using Wastewater for Microalgae in Winter Season (폐수를 이용한 겨울철 경제적 미세조류 배양 시스템의 개발)

  • Lee, Sang-Ah;Lee, Changsoo;Lee, Seung-Hoon;An, Kwang-Guk;Oh, Hee-Mock;Kim, Hee-Sik;Ahn, Chi-Yong
    • Korean Journal of Environmental Biology
    • /
    • v.32 no.1
    • /
    • pp.58-67
    • /
    • 2014
  • The outdoor mass cultivation is not possible for microalgae in Korea all year round, due to cold winter season. It is not easy to maintain proper level of productivity of microalgae even in winter. To prevent a drastic decrease of temperature in a greenhouse, two layers were covered additionally, inside the original plastic layer of the greenhouse. The middle layer was made up of plastic and the inner layer, of non-woven fabric. Acrylic transparent bioreactors were constructed to get more sunlight, not only from the upper side but also from the lateral and bottom directions. In winter at freezing temperatures, six different culture conditions were compared in the triply covered, insulated greenhouse. Wastewater after anaerobic digestion was used for the cultivation of microalgae to minimize the production cost. Water temperature in the bioreactors remained above $10^{\circ}C$ on average, even without any external heating system, proving that the triple-layered greenhouse is effective in keeping heat. Algal biomass reached to 0.37g $L^{-1}$ with the highest temperature, in the experimental group of light-reflection board at the bottom, with nitrogen and phosphorus removal rate of 92% and 99%, respectively. When fatty acid composition was analyzed using gas-chromatography, linoleate (C18 : 3n3) occupied the highest proportion up to 61%, in the all experiment groups. Chemical oxygen demand (COD), however, did not decrease during the cultivation, but rather increased. Although the algal biomass productivity was not comparable to warm seasons, it was possible to maintain water temperature for algae cultivation even in the coldest season, at the minimum cost.

Optimization of Culture Conditions for 1,3-propanediol Production from Glycerol Using Klebsiella pneumoniae (글리세롤로부터 1,3-propanediol 생산을 위한 Klebsiella pneumoniae 배양 조건 최적화)

  • Jun, Sun-Ae;Kong, Sean W;Sang, Byoung-In;Um, Youngsoon
    • Korean Chemical Engineering Research
    • /
    • v.47 no.6
    • /
    • pp.768-774
    • /
    • 2009
  • To improve the productivity of 1,3-propanediol(1,3-PD) with K. pneumoniae DSM4799 using pure glycerol and crude glycerol derived from the biodiesel process, optimizing fermentation conditions was performed by changing environmental factors such as anaerobic/aerobic condition, temperature, glycerol concentration, and pH. When anaerobic conditions were maintained, there was an improved 1,3-PD production compared with that from aerobic/anaerobic 2-stage fermentation. From the results with temperature $26{\sim}37^{\circ}C$, the higher 1,3-PD production yield was observed at $30{\sim}33^{\circ}C$. For an initial glycerol concentration higher than 60 g/L, cell growth and 1,3-PD production were inhibited. When crude glycerol was used, the initial 1,3-PD production appeared to be inhibited. After 48 hr of incubation, however, 1,3-PD production with crude glycerol was even higher than that with pure glycerol, demonstrating the feasibility of 1,3-PD production using crude glycerol as a substrate. Fed-batch fermentation was applied for the high concentration of 1,3-PD without substrate inhibition. By regulating pH at 7 during the fed-batch with glycerol lower than 40 g/L, the yield of 1,3-PD was 25% higher than that without pH regulation(0.56 g/g vs. 0.45 g/g). In conclusion, based on our results, anaerobic conditions, temperature at $30^{\circ}C$, pure or crude glycerol lower than 40 g/L, and pH regulation at 7 were the optimized conditions for 1,3-PD production using K. pneumoniae DSM4799, making it more feasible to produce 1,3-PD at higher concentration and a lower price.

Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock (토착 남세균 림노트릭스 속 KNUA012 균주의 바이오연료 원료로서의 특성 연구)

  • Hong, Ji Won;Jo, Seung-Woo;Kim, Oh Hong;Jeong, Mi Rang;Kim, Hyeon;Park, Kyung Mok;Lee, Kyoung In;Yoon, Ho-Sung
    • Journal of Life Science
    • /
    • v.26 no.4
    • /
    • pp.460-467
    • /
    • 2016
  • A filamentous cyanobacterium, Limnothrix sp. KNUA012, was axenically isolated from a freshwater bloom sample in Lake Hapcheon, Hapcheon-gun, Gyeongsangnam-do, Korea. Its morphological and molecular characteristics led to identification of the isolate as a member of the genus Limnothrix. Maximal growth was attained when the culture was incubated at 25℃. Analysis of its lipid composition revealed that strain KNUA012 could autotrophically synthesize alkanes, such as pentadecane (C15H32) and heptadecane (C17H36), which can be directly used as fuel without requiring a transesterification step. Two genes involved in alkane biosynthesis-an acyl-acyl carrier protein reductase and an aldehyde decarbonylase-were present in this cyanobacterium. Some common algal biodiesel constituents-myristoleic acid (C14:1), palmitic acid (C16:0), and palmitoleic acid (C16:1)-were produced by strain KNUA012 as its major fatty acids. A proximate analysis showed that the volatile matter content was 86.0% and an ultimate analysis indicated that the higher heating value was 19.8 MJ kg−1. The isolate also autotrophically produced 21.4 mg g−1 phycocyanin-a high-value antioxidant compound. Therefore, Limnothrix sp. KNUA012 appears to show promise for application in cost-effective production of microalga-based biofuels and biomass feedstock over crop plants.

Isolation and Phylogenetic Analysis of $Botryococcus$ $braunii$ (Trebouxiophyceae) from Korean Freshwaters (한국산 $Botryococcus$ $braunii$ (Trebouxiophyceae)의 분리 및 계통분류학적 분석)

  • Lee, Seung-Hoon;Lee, Chan-Hee;Jo, Beom-Ho;Ahn, Chi-Yong;Kim, Han-Soon;Oh, Hee-Mock
    • Korean Journal of Environmental Biology
    • /
    • v.30 no.1
    • /
    • pp.31-38
    • /
    • 2012
  • Recently, energy security is one of the most important world-wide issues. Biodiesel derived from microalgae has received much attention as a renewable bioenergy. The green colonial alga, $Botryococcus$ $braunii$, is characterized by the ability to produce and accumulate large amounts of hydrocarbons and fatty acids. In this study, we have isolated 5 strains of $B.$ $braunii$ from Korean surface waters using a microcapillary-pipetting method and identified them by morphological features and phylogenetic analysis of the 18S rRNA gene. Phylogenetic analysis indicates that 5 strains of $B.$ $braunii$ are placed in the class of Trebouxiophyceae, and strains belong to race A type producing hydrocarbons which are alkadienes and alkatrienes. In addition, we need further studies to find out optimal growth conditions for producing biodiesel.

The Effects of Cadmium on Seed Germination and Growth of Sunflower and Rape (카드뮴이 해바라기와 유채 발아 및 성장에 미치는 영향)

  • Lee, Kwang Kun;Cho, Han Sang;Kim, Jae Young
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.30 no.1B
    • /
    • pp.101-105
    • /
    • 2010
  • Sunflower (Sunking4505) and Rape (Sunmang) are oil-seeds containing high oleic acid, and these are used for the production materials of bio-diesel and applying for phytoremediation. The effect of cadmium on germination rate and the growth of the plants is evaluated. Object seeds were placed in Cd (0, 1.5, 4, 12, 30, 60, 100, 150, 300, 500 mg/L) solutions for seven days, and germination rate, root length, shoot length, seedling length, and dry weight were observed. $IC_{50}$, seedling vigor index, and tolerance indices were computed, and data were statistically analyzed by Analysis of Variance (ANOVA). Germination rate as well as root, shoot, and seedling length decreased as the cadmium concentration increased except dry weight. The $IC_{50}$ of sunflower and rape are 112 and 10 mg-Cd/L, respectively. Only one of the sunflower seeds is germinated at 500 mg-Cd/L whereas rape seeds are not germinated more than 150 mg-Cd/L solution. Root has higher cadmium sensitivity than shoot, and sunflower has higher germination rate, growth, and seedling vigor index than rape. In case of tolerance indices, sunflower has lower value than rape at relatively low concentration, but has higher value at high concentration.

Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation (금속 나노 촉매를 활용한 선택적 알코올 산화 반응)

  • Hussain, Muhammad Asif;Joseph, Nyanzi;Kang, Onyu;Cho, Young-Hun;Um, Byung-Hun;Kim, Jung Won
    • Applied Chemistry for Engineering
    • /
    • v.27 no.3
    • /
    • pp.227-238
    • /
    • 2016
  • This review article highlights different types of nano-sized catalysts for the selective alcohol oxidation to form aldehydes (or ketones) with supported or immobilized metal nanoparticles. Metal nanoparticle catalysts are obtained through dispersing metal nanoparticles over a solid support with a large surface area. The nanocatalysts have wide technological applications to industrial and academic fields such as organic synthesis, fuel cells, biodiesel production, oil cracking, energy conversion and storage, medicine, water treatment, solid rocket propellants, chemicals and dyes. One of main reactions for the nanocatalyst is an aerobic oxidation of alcohols to produce important intermediates for various applications. The oxidation of alcohols by supported nanocatalysts including gold, palladium, ruthenium, and vanadium is very economical, green and environmentally benign reaction leading to decrease byproducts and reduce the cost of reagents as opposed to stoichiometric reactions. In addition, the room temperature alcohol oxidation using nanocatalysts is introduced.

Development of Adhesive Resins Formulated with Rapeseed Flour Hydrolyzates for Laminated Veneer Lumber and Its Performance Evaluation (유채박을 이용한 단판적층재용 접착제의 개발 및 성능평가)

  • Yang, In;Han, Gyu-Seong;Choi, In-Gyu;Kim, Yong-Hyun;Ahn, Sye-Hee;Oh, Sei-Chang
    • Journal of the Korean Wood Science and Technology
    • /
    • v.39 no.3
    • /
    • pp.221-229
    • /
    • 2011
  • Due to the increase of oil price and the environmental issue such as the emission of volatile organic compounds, the necessity for developing alternative resins of petroleum-based adhesive resins, which have extensively been used for the manufacture of wood-based products, has been speculation since the early 1990. In our study, rapeseed flour (RSF), which is the by-product of bio-diesel produced from rapeseed, were hydrolyzed by enzymes. As a crosslinking agents of the RSF hydrolyzates, phenol-formaldehyde prepolymers (PF) were prepared. The RSF hydrolyzates and PF were mixed to complete the formulation of RSF-based adhesive resins, and the resins were applied to make the laminated veneer lumber (LVL). The physical and mechanical properties of the LVL were measured to examine whether RSF can be used as raw materials of adhesive resins for the fabrication of LVL or not. The average moisture content and soaking delamination rate of the LVL bonded with RSF-based adhesive resins exceeded the minimum requirement of KS standard. Moreover, thermal analysis of the RSF-based resins showed similar tendencies except for the RSF-based adhesive resins formulated with pectinase-hydrolyzed RSF. The bending strengths of the LVL were higher than that of the LVL made with commercial PF resins. These results showed the potential of RSF as a raw material of alternative adhesives for the production of LVL. Further works on the optimal conditions of RSF hydrolysis and spreading characteristics for RSF-based adhesive resins is required to improve the adhesive performance of RSF-based resins.

Characteristics of Fatty Acid Composition and Properties by Blending of Vegetable Oils (식물성 기름의 혼합을 통한 지방산 조성 및 이화학적 특성 변화)

  • Lee, Tae Sung;Lee, Yong Hwa;Kim, Kwang Soo;Kim, Wook;Kim, Kwan Su;Jang, Young Seok;Park, Kwang Geun
    • Korean Journal of Plant Resources
    • /
    • v.25 no.5
    • /
    • pp.624-632
    • /
    • 2012
  • As there have been lately many worldwide resource challenges such as potential exhaustion of fossil fuels, sudden rise of oil price and ever-rising grain pricing due to global food crisis, there have been more interests focused on recycling vegetable oils and fats into clean natural fuel and producing new resources based on waste cooking oil as a part of reusing waste resources. An Experiment was performed by using ratio of 50:50, 75:25 (w/w) mixture of based rapeseed oil, camellia oil, and olive oil. 50:50, 25:75 (w/w) mixture of based palm oil. The result was that the oleic acid ($C_{18:1}$) got the lowest percentage of 42.8%, when we combined the mixture of rapeseed oil and soybean oil. While the highest percentage of 72.1% was when the mixture of camellia oil and rapeseed oil were combined at 50:50 ratio. In 75:25 (w/w) case, mixture of rapeseed oil and soybean oil got the lowest. The highest ratio was the mixture of camellia oil and olive oil. Based on the component of palm oil, the total saturated fatty acid was decreased. It is expected that stabilizing oxidation through controlling of fatty acid after mixture and that liquidity at a low temperature. The acid value indicated that stabilizing oxidation got a range of highest to lowest. Camellia oil ranked as the highest, followed by olive oil, and the oil seeds as the lowest in rank. Controlling iodine value through mixture and improvement of stabilizing oxidation will provide a good quality. The quality of color has no significant change about mixture in ratio and maintenance. The reduction of the cost of refining process is expected by controling of mixture ratio at biodiesel production in the future.