Browse > Article
http://dx.doi.org/10.14478/ace.2016.1047

Supported Metal Nanoparticles: Their Catalytic Applications to Selective Alcohol Oxidation  

Hussain, Muhammad Asif (Department of Chemical Engineering, Kangwon National University)
Joseph, Nyanzi (Department of Chemical Engineering, Kangwon National University)
Kang, Onyu (Department of Chemical Engineering, Kangwon National University)
Cho, Young-Hun (Department of Chemical Engineering, Kangwon National University)
Um, Byung-Hun (Korea Institute of Science and Technology)
Kim, Jung Won (Department of Chemical Engineering, Kangwon National University)
Publication Information
Applied Chemistry for Engineering / v.27, no.3, 2016 , pp. 227-238 More about this Journal
Abstract
This review article highlights different types of nano-sized catalysts for the selective alcohol oxidation to form aldehydes (or ketones) with supported or immobilized metal nanoparticles. Metal nanoparticle catalysts are obtained through dispersing metal nanoparticles over a solid support with a large surface area. The nanocatalysts have wide technological applications to industrial and academic fields such as organic synthesis, fuel cells, biodiesel production, oil cracking, energy conversion and storage, medicine, water treatment, solid rocket propellants, chemicals and dyes. One of main reactions for the nanocatalyst is an aerobic oxidation of alcohols to produce important intermediates for various applications. The oxidation of alcohols by supported nanocatalysts including gold, palladium, ruthenium, and vanadium is very economical, green and environmentally benign reaction leading to decrease byproducts and reduce the cost of reagents as opposed to stoichiometric reactions. In addition, the room temperature alcohol oxidation using nanocatalysts is introduced.
Keywords
alcohol oxidation; aldehyde; supported metal; metal nanoparticle; nanocatalyst;
Citations & Related Records
연도 인용수 순위
  • Reference
1 H. Ji, T. Mizugaki, K. Ebitani, and K. Kaneda, Highly efficient oxidation of alcohols to carbonyl compounds in the presence of molecular oxygen using a novel heterogeneous ruthenium catalyst, Tetrahedron Lett., 43, 7179-7183 (2002).   DOI
2 H. B. Ji, K. Ebitani, T. Mizugaki, and K. Kaneda, Environmentally friendly alcohol oxidation using heterogeneous catalyst in the presence of air at room temperature, Catal. Commun., 3, 511-517 (2002).   DOI
3 D. I. Enache, D. W. Knight, and G. J. Hutchings, Solvent-free oxidation of primary alcohols to aldehydes using supported gold catalysts, Catal. Lett., 103, 43-52 (2005).   DOI
4 H. Guo, M. Kemell, A. Al-Hunaiti, S. Rautiainen, M. Leskela, and T. Repo, Gold-palladium supported on porous steel fiber matrix: Structured catalyst for benzyl alcohol oxidation and benzyl amine oxidation, Catal. Commun., 12, 1260-1264 (2011).   DOI
5 E. V. Johnston, O. Verho, M. D. Karkas, M. Shakeri, C. W. Tai, P. Palmgren, K. Eriksson, S. Oscarsson, and J. E. Backvall, Highly dispersed palladium nanoparticles on mesocellular foam: An efficient and recyclable heterogeneous catalyst for alcohol oxidation, Chem. Eur. J., 18, 12202-12206 (2012).   DOI
6 B. Karimi, S. Abedi, J. H. Clark, and V. Budarin, Highly efficient aerobic oxidation of alcohols using a recoverable catalyst: The role of mesoporous channels of SBA-15 in Stabilizing palladium nanoparticles, Angew. Chem. Int. Ed., 45, 4776-4779(2006).   DOI
7 V. Polshettiwar and R. S. Varma, Nanoparticle-supported and magnetically recoverable palladium (Pd) catalyst: A selective and sustainable oxidation protocol with high turnover number, Org. Biomol. Chem., 7, 37-40 (2009).   DOI
8 T. Nishimura, N. Kakiuchi, M. Inoue, and S. Uemura, Palladium (II)-supported hydrotalcite as a catalyst for selective oxidation of alcohols using molecular oxygen, Chem. Commun., 14, 1245-1246 (2000).
9 U. R. Pillai and E. Sahle-Demessie, Selective oxidation of alcohols by molecular oxygen over a Pd/MgO catalyst in the absence of any additives, Green Chem., 6, 161-165 (2004).   DOI
10 Z. Hou, N. Theyssen, A. Brinkmann, K. V. Klementiev, W. Grunert, M. Buhl, W. Schmidt, B. Spliethoff, B. Tesche, and C. Weidenthaler, Supported palladium nanoparticles on hybrid mesoporous silica: Structure/activity-relationship in the aerobic alcohol oxidation using supercritical carbon dioxide, J. Catal., 258, 315-323 (2008).   DOI
11 C. M. Parlett, D. W. Bruce, N. S. Hondow, A. F. Lee, and K. Wilson, Support-enhanced selective aerobic alcohol oxidation over Pd/mesoporous silicas, ACS Catal., 1, 636-640 (2011).   DOI
12 N. Dimitratos, A. Villa, D. Wang, F. Porta, D. Su, and L. Prati, Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols, J. Catal., 244, 113-121 (2006).   DOI
13 A. Yoshida, Y. Takahashi, T. Ikeda, K. Azemoto, and S. Naito, Catalytic oxidation of aromatic alcohols and alkylarenes with molecular oxygen over Ir/$TiO_{2}$, Catal. Today, 164, 332-335 (2011).   DOI
14 S. Velusamy, A. Srinivasan, and T. Punniyamurthy, Copper (II) catalyzed selective oxidation of primary alcohols to aldehydes with atmospheric oxygen, Tetrahedron Lett., 47, 923-926 (2006).   DOI
15 S. G. Babu, P. A. Priyadarsini, and R. Karvembu, Copper on boehmite: A simple, selective, efficient and reusable heterogeneous catalyst for oxidation of alcohols with periodic acid in water at room temperature, Appl. Catal., A, 392, 218-224 (2011).   DOI
16 A. Shaabani, S. Keshipour, M. Hamidzad, and M. Seyyedhamzeh, Cobalt (II) supported on ethylenediamine-functionalized nanocellulose as an efficient catalyst for room temperature aerobic oxidation of alcohols, J. Chem. Sci., 126, 111-115 (2014).   DOI
17 M. L. Kantam, R. Arundhathi, P. R. Likhar, and D. Damodara, Reusable copper aluminum hydrotalcite/rac BINOL system for room temperature selective aerobic oxidation of alcohols, Adv. Synth. Catal., 351, 2633-2637 (2009).   DOI
18 P. Gamez, I. W. Arends, R. A. Sheldon, and J. Reedijk, Room temperature aerobic copper-catalysed selective oxidation of primary alcohols to aldehydes, Adv. Synth. Catal., 346, 805-811 (2004).   DOI
19 G. Sarmah, S. K. Bharadwaj, A. Dewan, A. Gogoi, and U. Bora, An efficient and reusable vanadium based catalytic system for room temperature oxidation of alcohols to aldehydes and ketones, Tetrahedron Lett., 55, 5029-5032 (2014).   DOI
20 J. D. Lou and Z.-N. Xu, Selective oxidation of primary alcohols with chromium trioxide under solvent free conditions, Tetrahedron Lett., 43, 6095-6097 (2002).   DOI
21 R. Sheldon, Metal-Catalyzed Oxidations of Organic Compounds: Mechanistic Principles and Synthetic Methodology Including Biochemical Processes. Elsevier (2012).
22 X. Yang, X. Wang, C. Liang, W. Su, C. Wang, Z. Feng, C. Li, and J. Qiu, Aerobic oxidation of alcohols over Au/$TiO_{2}$: An insight on the promotion effect of water on the catalytic activity of Au/$TiO_{2}$, Catal. Commun., 9, 2278-2281 (2008).   DOI
23 A. Abad, P. Concepcion, A. Corma, and H. Garcia, A collaborative effect between gold and a support induces the selective oxidation of alcohols, Angew. Chem. Int. Ed., 44, 4066-4069 (2005).   DOI
24 A. Abad, C. Almela, A. Corma, and H. García, Efficient chemoselective alcohol oxidation using oxygen as oxidant. Superior performance of gold over palladium catalysts, Tetrahedron., 62, 6666-6672 (2006).   DOI
25 J. Hu, L. Chen, K. Zhu, A. Suchopar, and R. Richards, Aerobic oxidation of alcohols catalyzed by gold nano-particles confined in the walls of mesoporous silica, Catal. Today, 122, 277-283 (2007).   DOI
26 W. Fang, Q. Zhang, J. Chen, W. Deng, and Y. Wang, Gold nanoparticles on hydrotalcites as efficient catalysts for oxidant-free dehydrogenation of alcohols, Chem. Commun., 46, 1547-1549 (2010).   DOI
27 D. I. Enache, D. Barker, J. K. Edwards, S. H. Taylor, D. W. Knight, A. F. Carley, and G. J. Hutchings, Solvent-free oxidation of benzyl alcohol using titania-supported gold-palladium catalysts: Effect of Au-Pd ratio on catalytic performance, Catal. Today, 122, 407-411 (2007).   DOI
28 N. Kakiuchi, Y. Maeda, T. Nishimura, and S. Uemura, Pd (II)-Hydrotalcite-catalyzed oxidation of alcohols to aldehydes and ketones using atmospheric pressure of air, J. Org. Chem., 66, 6620-6625 (2001).   DOI
29 D. R. Jensen, J. S. Pugsley, and M. S. Sigman, Palladium-catalyzed enantioselective oxidations of alcohols using molecular oxygen, J. Am. Chem. Soc., 123, 7475-7476 (2001).   DOI
30 K. Mori, K. Yamaguchi, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Controlled synthesis of hydroxyapatite-supported palladium complexes as highly efficient heterogeneous catalysts, J. Am. Chem. Soc., 124, 11572-11573 (2002).   DOI
31 R. Ciriminna, S. Campestrini, and M. Pagliaro, FluoRuGel: a versatile catalyst for aerobic alcohol oxidation in supercritical carbon dioxide, Org. Biomol. Chem., 4, 2637-2641 (2006).   DOI
32 P. A. Shapley, N. Zhang, J. L. Allen, D. H. Pool, and H.-C. Liang, Selective alcohol oxidation with molecular oxygen catalyzed by Os-Cr and Ru-Cr complexes, J. Am. Chem. Soc., 122, 1079-1091 (2000).   DOI
33 N. Theyssen, Z. Hou, and W. Leitner, Selective oxidation of alkanes with molecular oxygen and acetaldehyde in compressed (supercritical) carbon dioxide as reaction medium, Chem. Eur. J., 12, 3401-3409 (2006).   DOI
34 Z. Hou, N. Theyssen, and W. Leitner, Palladium nanoparticles stabilised on PEG-modified silica as catalysts for the aerobic alcohol oxidation in supercritical carbon dioxide, Green Chem., 9, 127-132 (2007).   DOI
35 E. Choi, C. Lee, Y. Na, and S. Chang, $[RuCl_{2}(p-cymene)]_{2}$ on carbon: An efficient, selective, reusable, and environmentally versatile heterogeneous catalyst, Org. Lett., 4, 2369-2371 (2002).   DOI
36 A. N. Kharat, P. Pendleton, A. Badalyan, M. Abedini, and M. M. Amini, Oxidation of aldehydes using silica-supported Co (II)-substituted heteropolyacid, J. Mol. Catal. A: Chem., 175, 277-283 (2001).   DOI
37 S. Murahashi, T. Naota, and N. Hirai, Aerobic oxidation of alcohols with ruthenium-cobalt bimetallic catalyst in the presence of aldehydes, J. Org. Chem., 58, 7318-7319 (1993).   DOI
38 Z. Opre, J.-D. Grunwaldt, M. Maciejewski, D. Ferri, T. Mallat, and A. Baiker, Promoted Ru-hydroxyapatite: Designed structure for the fast and highly selective oxidation of alcohols with oxygen, J. Catal., 230, 406-419 (2005).   DOI
39 Z. Opre, J.-D. Grunwaldt, T. Mallat, and A. Baiker, Selective oxidation of alcohols with oxygen on Ru-Co-hydroxyapatite: A mechanistic study, J. Mol. Catal. A: Chem., 242, 224-232 (2005).   DOI
40 F. Vocanson, Y. Guo, J. Namy, and H. Kagan, Dioxygen oxidation of alcohols and aldehydes over a cerium dioxide-ruthenium system, Synth. Commun., 28, 2577-2582 (1998).   DOI
41 S. Venkatesan, A. S. Kumar, J.-F. Lee, T.-S. Chan, and J.-M. Zen, Ruthenium-functionalized nickel hydroxide catalyst for highly efficient alcohol oxidations in the presence of molecular oxygen, Chem. Commun., 14, 1912-1914 (2009).
42 M. Gopiraman, S. Ganesh Babu, Z. Khatri, W. Kai, Y. A. Kim, M. Endo, R. Karvembu, and I. S. Kim, Dry synthesis of easily tunable nano ruthenium supported on graphene: novel nanocatalysts for aerial oxidation of alcohols and transfer hydrogenation of ketones, J. Phys. Chem. C, 117, 23582-23596 (2013).   DOI
43 T. Yasueda, S. Kitamura, N. O. Ikenaga, T. Miyake, and T. Suzuki, Selective oxidation of alcohols with molecular oxygen over $Ru/CaO-ZrO_{2}$ catalyst, J. Mol. Catal. A: Chem., 323, 7-15 (2010).   DOI
44 P. Haider, J.-D. Grunwaldt, R. Seidel, and A. Baiker, Gold supported on Cu-Mg-Al and Cu-Ce mixed oxides: An in situ XANES study on the state of Au during aerobic alcohol oxidation, J. Catal., 250, 313-323 (2007).   DOI
45 J. D. Cosimo, V. Diez, M. Xu, E. Iglesia, and C. Apesteguia, Structure and surface and catalytic properties of Mg-Al basic oxides, J. Catal., 178, 499-510 (1998).   DOI
46 T. Sato and T. Komanoya, Selective oxidation of alcohols with molecular oxygen catalyzed by $Ru/MnO_{x}/CeO_{2}$ under mild conditions, Catal. Commun., 10, 1095-1098 (2009).   DOI
47 M. J. Schultz, C. C. Park, and M. S. Sigman, A convenient palladium-catalyzed aerobic oxidation of alcohols at room temperature, Chem. Commun., 24, 3034-3035 (2002).
48 S. Chaturvedi, P. N. Dave, and N. Shah, Applications of nano-catalyst in new era, J. Saudi Chem. Soc., 16, 307-325 (2012).   DOI
49 L. Wang, J. Zhang, X. Meng, D. Zheng, and F.-S. Xiao, Superior catalytic properties in aerobic oxidation of alcohols over Au nanoparticles supported on layered double hydroxide, Catal. Today, 175, 404-410 (2011).   DOI
50 H. Miyamura, R. Matsubara, Y. Miyazaki, and S. Kobayashi, Aerobic oxidation of alcohols at room temperature and atmospheric conditions catalyzed by reusable gold nanoclusters stabilized by the benzene rings of polystyrene derivatives, Angew. Chem., 119, 4229-4232 (2007).   DOI
51 B. M. Trost, The atom economy-A search for synthetic efficiency, Science, 1471-1477 (1991).
52 S. Chaturvedi and P. N. Dave, A review on the use of nanometals as catalysts for the thermal decomposition of ammonium perchlorate, J. Saudi Chem. Soc., 17, 135-149 (2013).   DOI
53 C. Burda, X. Chen, R. Narayanan, and M. A. El-Sayed, Chemistry and properties of nanocrystals of different shapes, Chem. Rev., 105, 1025-1102 (2005).   DOI
54 A. T. Bell, The impact of nanoscience on heterogeneous catalysis, Science, 299, 1688-1691 (2003).   DOI
55 B. M. Trost, Atom economy-A challenge for organic synthesis: Homogeneous catalysis leads the way, Angew. Chem. Int. Ed., 34, 259-281 (1995).   DOI
56 R. A. Sheldon, Catalysis: The key to waste minimization, J. Chem. Tech. Biotechnol., 68, 381-388 (1997).   DOI
57 R. A. Sheldon and E factors, green chemistry and catalysis: An odyssey, Chem. Commun., 29, 3352-3365 (2008).
58 J. A. Glaser, Green chemistry with nanocatalysts, Clean Technol. Environ. Policy, 14, 1-8 (2012).   DOI
59 C. H. Bartholomew and R. J. Farrauto, Fundamentals of Industrial Catalytic Processes, John Wiley & Sons (2011).
60 N. R. Shiju and V. V. Guliants, Recent developments in catalysis using nanostructured materials, Appl. Catal., A, 356, 1-17 (2009).   DOI
61 J. Fan and Y. Gao, Nanoparticle-supported catalysts and catalytic reactions-A mini-review, J. Exp. Nanosci., 1, 457-475 (2006).   DOI
62 B. Z. Zhan, M. A. White, T. K. Sham, J. A. Pincock, R. J. Doucet, K. R. Rao, K. N. Robertson, and T. S. Cameron, Zeolite-confined nano-RuO2: A green, selective, and efficient catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 125, 2195-2199 (2003).   DOI
63 R. Narayanan and M. A. El-Sayed, Shape-dependent catalytic activity of platinum nanoparticles in colloidal solution, Nano Lett., 4, 1343-1348 (2004).   DOI
64 Y. H. Kim, S. K. Hwang, J. W. Kim, and Y. S. Lee, Zirconia-supported ruthenium catalyst for efficient aerobic oxidation of alcohols to aldehydes, Ind. Eng. Chem. Res., 53, 12548-12552 (2014).   DOI
65 J. M. G. Carballo, J. Yang, A. Holmen, S. Garcia-Rodriguez, S. Rojas, M. Ojeda, and J. L. G. Fierro, Catalytic effects of ruthenium particle size on the Fischer-Tropsch synthesis, J. Catal., 284, 102-108 (2011).   DOI
66 K. Mori, T. Hara, T. Mizugaki, K. Ebitani, and K. Kaneda, Hydroxyapatite-supported palladium nanoclusters: A highly active heterogeneous catalyst for selective oxidation of alcohols by use of molecular oxygen, J. Am. Chem. Soc., 126, 10657-10666 (2004).   DOI
67 T. Mitsudome, Y. Mikami, H. Funai, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Oxidant free alcohol dehydrogenation using a reusable hydrotalcite supported silver nanoparticle catalyst, Angew. Chem., 120, 144-147 (2008).   DOI
68 X. Yang, X. Wang, and J. Qiu, Aerobic oxidation of alcohols over carbon nanotube-supported Ru catalysts assembled at the interfaces of emulsion droplets, Appl. Catal. A, 382, 131-137 (2010).   DOI
69 T. Mitsudome, Y. Mikami, K. Ebata, T. Mizugaki, K. Jitsukawa, and K. Kaneda, Copper nanoparticles on hydrotalcite as a heterogeneous catalyst for oxidant-free dehydrogenation of alcohols, Chem. Commun., 39, 4804-4806 (2008).
70 L. C. Wang, Y. M. Liu, M. Chen, Y. Cao, H. Y. He, and K. N. Fan, $MnO_{2}$ nanorod supported gold nanoparticles with enhanced activity for solvent-free aerobic alcohol oxidation, J. Phys. Chem. C, 112, 6981-6987 (2008).   DOI
71 A. J. Plomp, H. Vuori, A. O. I. Krause, K. P. Jong, and J. H. Bitter, Particle size effects for carbon nanofiber supported platinum and ruthenium catalysts for the selective hydrogenation of cinnamaldehyde, Appl. Catal. A, 351, 9-15 (2008).   DOI
72 R. Zanella, S. Giorgio, C. R. Henry, and C. Louis, Alternative methods for the preparation of gold nanoparticles supported on $TiO_{2}$, J. Phys. Chem. B, 106, 7634-7642 (2002).   DOI
73 P. Haider and A. Baiker, Gold supported on Cu-Mg-Al-mixed oxides: Strong enhancement of activity in aerobic alcohol oxidation by concerted effect of copper and magnesium, J. Catal., 248, 175-187 (2007).   DOI
74 L. Madler, H. Kammler, R. Mueller, and S. Pratsinis, Controlled synthesis of nanostructured particles by flame spray pyrolysis, J. Aerosol Sci., 33, 369-389 (2002).   DOI
75 M. S. Kwon, N. Kim, C. M. Park, J. S. Lee, K. Y. Kang, and J. Park, Palladium nanoparticles entrapped in aluminum hydroxide: Dual catalyst for alkene hydrogenation and aerobic alcohol oxidation, Org. Lett., 7, 1077-1079 (2005).   DOI
76 S. Kim, S. W. Bae, J. S. Lee, and J. Park, Recyclable gold nanoparticle catalyst for the aerobic alcohol oxidation and C-C bond forming reaction between primary alcohols and ketones under ambient conditions, Tetrahedron., 65, 1461-1466 (2009).   DOI
77 N. Dimitratos, J. A. Lopez-Sanchez, D. Morgan, A. Carley, L. Prati, and G. J. Hutchings, Solvent free liquid phase oxidation of benzyl alcohol using Au supported catalysts prepared using a sol immobilization technique, Catal. Today, 122, 317-324 (2007).   DOI
78 S. H. Joo, J. Y. Park, J. R. Renzas, D. R. Butcher, W. Huang, and G. A. Somorjai, Size effect of ruthenium nanoparticles in catalytic carbon monoxide oxidation, Nano Lett., 10, 2709-2713 (2010).   DOI
79 S. Dahoah, Z. Nairoukh, M. Fanun, M. Schwarze, R. Schomacker, and J. Blum, Decarbonylation of water insoluble carboxaldehydes in aqueous microemulsions by some sol-gel entrapped catalysts, J. Mol. Catal. A: Chem., 380, 90-93 (2013).   DOI
80 Y. Hong, X. Yan, X. Liao, R. Li, S. Xu, L. Xiao, and J. Fan, Platinum nanoparticles supported on Ca(Mg)-zeolites for efficient room-temperature alcohol oxidation under aqueous conditions, Chem. Commun., 50, 9679-9682 (2014).   DOI
81 Z. Opre, D. Ferri, F. Krumeich, T. Mallat, and A. Baiker, Aerobic oxidation of alcohols by organically modified ruthenium hydroxyapatite, J. Catal., 241, 287-295 (2006).   DOI
82 S. Seok, M. A. Hussain, K. J. Park, J. W. Kim, and D. H. Kim, Sonochemical synthesis of PdO@ silica as a nanocatalyst for selective aerobic alcohol oxidation, Ultrason. Sonochem., 28, 178-184 (2016).   DOI
83 E. Gusta, V. Sundaramurthy, A. Dalai, and J. Adjaye, Hydrotreating of heavy gas oil derived from athabasca bitumen over Co-Mo/$\gamma$-$Al_{2}O_{3}$ catalyst prepared by sonochemical method, Top. Catal., 37, 147-153 (2006).   DOI
84 D. Srivastava, N. Perkas, A. Gedanken, and I. Felner, Sonochemical synthesis of mesoporous iron oxide and accounts of its magnetic and catalytic properties, J. Phys. Chem. B, 106, 1878-1883 (2002).   DOI
85 M. Haruta, N. Yamada, T. Kobayashi, and S. Iijima, Gold catalysts prepared by coprecipitation for low-temperature oxidation of hydrogen and of carbon monoxide, J. Catal., 115, 301-309 (1989).   DOI
86 B. Yoon, H. Hakkinen, U. Landman, A. S. Worz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Charging effects on bonding and catalyzed oxidation of CO on $Au_{8}$ clusters on MgO, Science, 307, 403-407 (2005).   DOI
87 M. Okumura, S. Tsubota, and M. Haruta, Vital role of moisture in the catalytic activity of supported gold nanoparticles, Angew. Chem. Int. Ed., 43, 2129-2132 (2004).   DOI
88 S. Lee, C. Fan, T. Wu, and S. L. Anderson, CO oxidation on Au n/$TiO_{2}$ catalysts produced by size-selected cluster deposition, J. Am. Chem. Soc., 126, 5682-5683 (2004).   DOI
89 L. D. Socaciu, J. Hagen, T. M. Bernhardt, L. Woste, U. Heiz, H. Hakkinen, and U. Landman, Catalytic CO oxidation by free $Au_{2}^{-}$: Experiment and theory, J. Am. Chem. Soc., 125, 10437-10445 (2003).   DOI
90 J. Han, Y. Liu, and R. Guo, Reactive template method to synthesize gold nanoparticles with controllable size and morphology supported on shells of polymer hollow microspheres and their application for aerobic alcohol oxidation in water, Adv. Funct. Mater., 19, 1112-1117 (2009).   DOI
91 C. Milone, R. Ingoglia, G. Neri, A. Pistone, and S. Galvagno, Gold catalysts for the liquid phase oxidation of o-hydroxybenzyl alcohol, Appl. Catal., A, 211, 251-257 (2001).   DOI
92 S. Carrettin, P. McMorn, P. Johnston, K. Griffin, and G. J. Hutchings, Selective oxidation of glycerol to glyceric acid using a gold catalyst in aqueous sodium hydroxide, Chem. Commun., 7, 696-697 (2002).
93 C. Milone, R. Ingoglia, A. Pistone, G. Neri, and S. Galvagno, Activity of gold catalysts in the liquid-phase oxidation of o-hydroxybenzyl alcohol, Catal. Lett., 87, 201-209 (2003).   DOI
94 B. Karimi and F. K. Esfahani, Gold nanoparticles supported on the periodic mesoporous organosilicas as efficient and reusable catalyst for room temperature aerobic oxidation of alcohols, Adv. Synth. Catal., 354, 1319-1326 (2012).   DOI
95 F. Porta and L. Prati, Selective oxidation of glycerol to sodium glycerate with gold-on-carbon catalyst: An insight into reaction selectivity, J. Catal., 224, 397-403 (2004).   DOI
96 D. V. Jawale, E. Gravel, V. Geertsen, H. Li, N. Shah, I. N. Namboothiri, and E. Doris, Aerobic oxidation of phenols and related compounds using carbon nanotube-gold nanohybrid catalysts, Chem. Cat. Chem., 6, 719-723 (2014).
97 B. Karimi and F. K. Esfahani, Gold nanoparticles supported on $Cs_{2}CO_{3}$ as recyclable catalyst system for selective aerobic oxidation of alcohols at room temperature, Chem. Commun., 37, 5555-5557 (2009).
98 M. Mahyari, A. Shaabani, and Y. Bide, Gold nanoparticles supported on supramolecular ionic liquid grafted graphene: A bifunctional catalyst for the selective aerobic oxidation of alcohols, RSC Adv., 3, 22509-22517 (2013).   DOI
99 M. A. Hussain, M. Yang, T. J. Lee, J. W. Kim, and B. G. Choi, High density decoration of noble metal nanoparticles on polydopamine-functionalized molybdenum disulphide, J. Colloid Interface Sci., 451, 216-220 (2015).   DOI
100 N. Mizuno and K. Yamaguchi, Selective aerobic oxidations by supported ruthenium hydroxide catalysts, Catal. Today, 132, 18-26 (2008).   DOI
101 K. Yamaguchi, J. W. Kim, J. He, and N. Mizuno, Aerobic alcohol oxidation catalyzed by supported ruthenium hydroxides, J. Catal., 268, 343-349 (2009).   DOI
102 K. Yamaguchi, K. Mori, T. Mizugaki, K. Ebitani, and K. Kaneda, Creation of a monomeric Ru species on the surface of hydroxyapatite as an efficient heterogeneous catalyst for aerobic alcohol oxidation, J. Am. Chem. Soc., 122, 7144-7145 (2000).   DOI
103 K. Yamaguchi and N. Mizuno, Scope, kinetics, and mechanistic aspects of aerobic oxidations catalyzed by ruthenium supported on alumina, Chem. Eur. J., 9, 4353-4361 (2003).   DOI
104 M. Kotani, T. Koike, K. Yamaguchi, and N. Mizuno, Ruthenium hydroxide on magnetite as a magnetically separable heterogeneous catalyst for liquid-phase oxidation and reduction, Green Chem., 8, 735-741 (2006).   DOI
105 K. Yamaguchi and N. Mizuno, Supported ruthenium catalyst for the heterogeneous oxidation of alcohols with molecular oxygen, Angew. Chem. Int. Ed., 41, 4538-4542 (2002).   DOI
106 K. Mori, S. Kanai, T. Hara, T. Mizugaki, K. Ebitani, K. Jitsukawa, and K. Kaneda, Development of ruthenium-hydroxyapatite-encapsulated superparamagnetic $\gamma$-$Fe_{2}O_{3}$ nanocrystallites as an efficient oxidation catalyst by molecular oxygen, Chem. Mater., 19, 1249-1256 (2007).   DOI
107 K. Ebitani, H.-B. Ji, T. Mizugaki, and K. Kaneda, Highly active trimetallic Ru/$CeO_{2}$/CoO (OH) catalyst for oxidation of alcohols in the presence of molecular oxygen, J. Mol. Catal. A: Chem., 212, 161-170 (2004).   DOI
108 K. Ebitani, K. Motokura, T. Mizugaki, and K. Kaneda, Heterotrimetallic RuMnMn species on a hydrotalcite surface as highly efficient heterogeneous catalysts for liquid phase oxidation of alcohols with molecular oxygen, Angew. Chem., 117, 3489-3492 (2005).   DOI