Browse > Article
http://dx.doi.org/10.5352/JLS.2016.26.4.460

Characterization of a Korean Domestic Cyanobacterium Limnothrix sp. KNUA012 for Biofuel Feedstock  

Hong, Ji Won (Advanced Bio-resource Research Center, Kyungpook National University)
Jo, Seung-Woo (Department of Energy Science, Kyungpook National University)
Kim, Oh Hong (Advanced Bio-resource Research Center, Kyungpook National University)
Jeong, Mi Rang (School of Life Sciences, BK21 Plus KNU Creative BioResearch Group, Kyungpook National University)
Kim, Hyeon (Advanced Bio-resource Research Center, Kyungpook National University)
Park, Kyung Mok (Department of Pharmaceutical Engineering, Dongshin University)
Lee, Kyoung In (Biotechnology Industrialization Center, Dongshin University)
Yoon, Ho-Sung (Advanced Bio-resource Research Center, Kyungpook National University)
Publication Information
Journal of Life Science / v.26, no.4, 2016 , pp. 460-467 More about this Journal
Abstract
A filamentous cyanobacterium, Limnothrix sp. KNUA012, was axenically isolated from a freshwater bloom sample in Lake Hapcheon, Hapcheon-gun, Gyeongsangnam-do, Korea. Its morphological and molecular characteristics led to identification of the isolate as a member of the genus Limnothrix. Maximal growth was attained when the culture was incubated at 25℃. Analysis of its lipid composition revealed that strain KNUA012 could autotrophically synthesize alkanes, such as pentadecane (C15H32) and heptadecane (C17H36), which can be directly used as fuel without requiring a transesterification step. Two genes involved in alkane biosynthesis-an acyl-acyl carrier protein reductase and an aldehyde decarbonylase-were present in this cyanobacterium. Some common algal biodiesel constituents-myristoleic acid (C14:1), palmitic acid (C16:0), and palmitoleic acid (C16:1)-were produced by strain KNUA012 as its major fatty acids. A proximate analysis showed that the volatile matter content was 86.0% and an ultimate analysis indicated that the higher heating value was 19.8 MJ kg−1. The isolate also autotrophically produced 21.4 mg g−1 phycocyanin-a high-value antioxidant compound. Therefore, Limnothrix sp. KNUA012 appears to show promise for application in cost-effective production of microalga-based biofuels and biomass feedstock over crop plants.
Keywords
Alkane-producing genes; biofuel; cyanobacteria; phycocyanin; potential feedstock;
Citations & Related Records
연도 인용수 순위
  • Reference
1 Altschul, S. F., Gish, W., Miller, W., Myers, E. W. and Lipman, D. J. 1990. Basic local alignment search tool. J. Mol. Biol. 215, 403-410.   DOI
2 Bi, Z. and He, B. B. 2013. Characterization of microalgae for the purpose of biofuel production. Biol. Eng. Trans. 56, 1529-1539.
3 Chisti, Y. 2007. Biodiesel from microalgae. Biotechnol. Adv. 25, 294-306.   DOI
4 Coates, R. C., Podell, S., Korobeynikov, A., Lapidus, A., Pevzner, P., Sherman, D. H., Allen, E. E., Gerwick, L. and Gerwick, W. H. 2014. Characterization of cyanobacterial hydrocarbon composition and distribution of biosynthetic pathways. PLoS ONE 9, e85140.   DOI
5 Dassey, A. J., Hall, S. G. and Theegala, C. S. 2014. An analysis of energy consumption for algal biodiesel production: Comparing the literature with current estimates. Algal Res. 4, 89-95.   DOI
6 Demirbas, A. 2005. Biodiesel production from vegetable oils via catalytic and non-catalytic supercritical methanol transesterification method. Prog. Energy Combust. Sci. 31, 466-487.   DOI
7 Dismukes, G. C., Carrieri, D., Bennette, N., Ananyev, G. M. and Posewitz, M. C. 2008. Aquatic phototrophs: efficient alternatives to land-based crops for biofuels. Curr. Opin. Biotechnol. 19, 235-240.   DOI
8 Felsenstein, J. 1985. Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39, 783-791.   DOI
9 Friedl, A., Padouvas, E., Rotter, H. and Varmuza, K. 2005. Prediction of heating values of biomass fuel from elemental composition. Anal. Chim. Acta 544, 191-198.   DOI
10 Fu, W. J., Chi, Z., Ma, Z. C., Zhou, H. X., Liu, G. L., Lee, C. F. and Chi, Z. M. 2015. Hydrocarbons, the advanced biofuels produced by different organisms, the evidence that alkanes in petroleum can be renewable. App. Microbiol. Biotechnol. 99, 7481-7494.   DOI
11 Hu, Q., Sommerfeld, M., Jarvis, E., Ghirardi, M., Posewitz, M., Seibert, M. and Darzins, A. 2008. Microalgal triacylglycerols as feedstocks for biofuel production: perspectives and advances. Plant J. 54, 621-639.   DOI
12 Huntley, M. E. and Redalje, D. G. 2007. CO2 mitigation and renewable oil from photosynthetic microbes: a new appraisal. Mitigation Adapt. Strateg. Glob. Chang. 12, 573-608.   DOI
13 Johnson, M. B. and Wen, Z. 2009. Production of biodiesel fuel from the microalga Schizochytrium limacinum by direct transesterification of algal biomass. Energ. Fuel 23, 5179-5183.   DOI
14 Knothe, G. 2010. Biodiesel and renewable diesel: a comparison. Prog. Energy Combust. Sci. 36, 364-373.   DOI
15 Lardon, L., Helias, A., Sialve, B, Steyer, J. P. and Bernard, O. 2009. Life-cycle assessment of biodiesel production from microalgae. Environ. Sci. Technol. 43, 6475-6481.   DOI
16 Li, Y., Horsman, M., Wu, N., Lan, C. Q. and Dubois-Calero, N. 2008. Biofuels from microalgae. Biotechnol. Prog. 24, 815-820.
17 Meher, L. C., Vidya Sagar, D. and Naik, S. N. 2006. Technical aspects of biodiesel production by transesterification-a review. Renew. Sust. Energ. Rev. 10, 248-268.   DOI
18 Nagaraj, S., Arulmurugan, P., Rajaram, M. G., Karuppasamy, K., Jayappriyan, K. R., Sundararaj, R., Vijayanand, N. and Rengasamy, R., 2012. Hepatoprotective and antioxidative effects of C-phycocyanin from Arthrospira maxima SAG 25780 in CCl 4-induced hepatic damage rats. Biomed. Prev. Nutr. 2, 81-85.   DOI
19 Nübel, U., Garcia-Pichel, F. and Muyzer, G. 1997. PCR primers to amplify 16S rRNA genes from cyanobacteria. Appl. Environ. Microbiol. 63, 3327-3332.
20 Neilan, B. A., Jacobs, D. and Goodman, A. E. 1995. Genetic diversity and phylogeny of toxic cyanobacteria determined by DNA polymorphisms within the phycocyanin locus. Appl. Environ. Microbiol. 61, 3875-3883.
21 Rippka, R., Deruelles, J., Waterbury, J. B., Herdman, M. and Stanier, R. 1979. Genetic assignments, strain histories and properties of pure cultures of cyanobacteria. J. Gen. Microbiol. 111, 1-61.
22 Ross, A. B., Jones, J. M., Kubacki, M. L. and Bridgeman, T. 2008. Classification of macroalgae as fuel and its thermo-chemical behaviour. Bioresour. Technol. 99, 6494-6504.   DOI
23 Rudi, K., Skulberg, O. M. and Jakobsen, K. S. 1998. Evolution of cyanobacteria by exchange of genetic material among phyletically related strains. J. Bacteriol. 180, 3453-3461.
24 Schenk, P. M., Thomas-Hall, S. R., Stephens, E., Marx, U. C., Mussgnug, J. H., Posten, C., Kruse, O. and Hankamer, B. 2008. Second generation biofuels: high-efficiency microalgae for biodiesel production. Bioenergy Res. 1, 20-43.   DOI
25 Schirmer, A., Rude, M. A., Li, X., Popova, E. and del Cardayre, S. B. 2010. Microbial biosynthesis of alkanes. Science 329, 559-562.   DOI
26 Shakeel, T., Fatma, Z., Fatma, T. and Yazdani, S. S. 2015. Heterogeneity of alkane chain length in freshwater and marine cyanobacteria. Front. Bioeng. Biotechnol. 3, 34.
27 Shih, C. M., Cheng, S. N., Wong, C. S., Kuo, Y. L. and Chou, T. C. 2009. Antiinflammatory and antihyperalgesic activity of C-phycocyanin. Anesth. Analg. 108, 1303-1310.   DOI
28 Taton, A., Grubisic, S., Brambilla, E., De Wit, R. and Wilmotte, A. 2003. Cyanobacterial diversity in natural and artificial microbial mats of Lake Fryxell (McMurdo Dry Valleys, Antarctica): a morphological and molecular approach. Appl. Environ. Microbiol. 69, 5157-5169.   DOI
29 Silveira, S. T., Burkert, J. F. M., Costa, J. A. V., Burkert, C. A. V. and Kalil, S. J. 2007. Optimization of phycocyanin extraction from Spirulina platensis using factorial design. Bioresour. Technol. 98, 1629-1634.   DOI
30 Tamura, K., Stecher, G., Peterson, D., Filipski, A. and Kumar, S. 2013. MEGA6: molecular evolutionary genetics analysis version 6.0. Mol. Biol. Evol. 30, 2725-2729.   DOI
31 Untergasser, A., Nijveen, H., Rao, X., Bisseling, T., Geurts, R. and Leunissen, J. A. M. 2007. Primer3Plus, an enhanced web interface to Primer3. Nucleic Acids Res. 35, 71-74.
32 Valentine, D. L. and Reddy, C. M. 2015. Latent hydrocarbons from cyanobacteria. Proc. Natl. Acad. Sci. USA 112, 13434-13435.   DOI
33 Wang, W., Liu, X. and Lu, X. 2013. Engineering cyanobacteria to improve photo-synthetic production of alka(e)nes. Biotechnol. Biofuels 6, 69.   DOI
34 Yoshida, S., Takahashi, M., Ikeda, A., Fukuda, H., Kitazaki, C. and Asayama, M. 2015. Overproduction and easy recovery of biofuels from engineered cyanobacteria, autolyzing multicellular cells. J. Biochem. 157, 519-527.   DOI