• Title/Summary/Keyword: 바이오데이터

Search Result 378, Processing Time 0.028 seconds

A Study on the Proposal of the Cloud Based Technology for VoD Systems and Analysis of Economic Effects (양식VoD 시스템에 대한 클라우드 기반 기술을 적용 제안 및 경제적인 효과를 분석 연구)

  • Chae, Jong Soo;Byeon, Sang-Gu;Seo, Chang-Ho;Yang, Jong Won
    • Journal of Korea Entertainment Industry Association
    • /
    • v.5 no.1
    • /
    • pp.149-153
    • /
    • 2011
  • In this study, a configuration method for a cloud technology based VoD system through two different scenarios is proposed. The first scenario virtualizes DMC, content storages for each SO, and stream servers in the conventional VoD system in order to efficiently use the additionally required storage capacity and stream server. In the second scenario, it is proposed that cable broadcasting systems including VoD systems are to be changed as cloud in which the subscriber STB should have minimum programs and storage regions to connect networks, and the operating system and middle ware presented in the existing subscriber STB is moved to the cloud data center. In addition, the comparison of the application of the cloud technology for the cost of changing the existing system to STB and the cost of establishing a cloud VoD system is performed in order to analyze the cost reduction in broadcasting businesses based on the establishment of VoD systems.

Factors Influencing Sexual Experiences in Adolescents Using a Random Forest Model: Secondary Data Analysis of the 2019~2021 Korea Youth Risk Behavior Web-based Survey Data (랜덤 포레스트 모델을 활용한 국내 청소년 성경험 영향요인 분석 연구: 2019~2021년 청소년건강행태조사 데이터)

  • Yang, Yoonseok;Kwon, Ju Won;Yang, Youngran
    • Journal of Korean Academy of Nursing
    • /
    • v.54 no.2
    • /
    • pp.193-210
    • /
    • 2024
  • Purpose: The objective of this study was to develop a predictive model for the sexual experiences of adolescents using the random forest method and to identify the "variable importance." Methods: The study utilized data from the 2019 to 2021 Korea Youth Risk Behavior Web-based Survey, which included 86,595 man and 80,504 woman participants. The number of independent variables stood at 44. SPSS was used to conduct Rao-Scott χ2 tests and complex sample t-tests. Modeling was performed using the random forest algorithm in Python. Performance evaluation of each model included assessments of precision, recall, F1-score, receiver operating characteristics curve, and area under the curve calculations derived from the confusion matrix. Results: The prevalence of sexual experiences initially decreased during the COVID-19 pandemic, but later increased. "Variable importance" for predicting sexual experiences, ranked in the top six, included week and weekday sedentary time and internet usage time, followed by ease of cigarette purchase, age at first alcohol consumption, smoking initiation, breakfast consumption, and difficulty purchasing alcohol. Conclusion: Education and support programs for promoting adolescent sexual health, based on the top-ranking important variables, should be integrated with health behavior intervention programs addressing internet usage, smoking, and alcohol consumption. We recommend active utilization of the random forest analysis method to develop high-performance predictive models for effective disease prevention, treatment, and nursing care.

A Study on Implementation of Human Centric Lighting Using Sunrise and Sunset Data (일출일몰 데이터를 이용한 인간 중심 조명 구현에 관한 연구)

  • Doowon Jang;Chunghyeok Kim;Gyuwon Jo
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.37 no.5
    • /
    • pp.486-493
    • /
    • 2024
  • Lighting has been used for a long time as a medium to convey brightness from darkness, and through incandescent lamps and fluorescent lamps, LED light sources have now become the standard in the lighting industry. Recently, the lighting equipment industry has been undergoing rapid digital transformation, starting with smart lighting, and is evolving into smart lighting customized for individuals and spaces through the development of IoT technology, cloud-based services, and data analysis. However, the blue light emitted from digital devices (computers, smartphones, tablets, etc.) or LED lights stimulates the melanopsin in the optic ganglion cells in the retina of the eye, which in turn stimulates the secretion of melatonin through the pineal gland, which regulates the secretion of melatonin. This can reduce sleep quality or disrupt biological rhythms. This interaction between blue light and melatonin has such a significant impact on human sleep patterns and overall health that it is essential to reduce exposure to blue light, especially in the evening. Human-centered lighting refers to lighting that takes into account the effects of light on the physical and mental areas, such as human activity and awakening, improvement of sleep quality, and health management. Many research institutes study the effects in the visible area and the non-visible area. By studying the impact, it is expected to improve the quality of human life. In this study, we plan to study ways to implement human-centered lighting by collecting sunrise and sunset data and linking commercialized LED packages and control devices with open-source hardware.

Design of MAHA Supercomputing System for Human Genome Analysis (대용량 유전체 분석을 위한 고성능 컴퓨팅 시스템 MAHA)

  • Kim, Young Woo;Kim, Hong-Yeon;Bae, Seungjo;Kim, Hag-Young;Woo, Young-Choon;Park, Soo-Jun;Choi, Wan
    • KIPS Transactions on Software and Data Engineering
    • /
    • v.2 no.2
    • /
    • pp.81-90
    • /
    • 2013
  • During the past decade, many changes and attempts have been tried and are continued developing new technologies in the computing area. The brick wall in computing area, especially power wall, changes computing paradigm from computing hardwares including processor and system architecture to programming environment and application usage. The high performance computing (HPC) area, especially, has been experienced catastrophic changes, and it is now considered as a key to the national competitiveness. In the late 2000's, many leading countries rushed to develop Exascale supercomputing systems, and as a results tens of PetaFLOPS system are prevalent now. In Korea, ICT is well developed and Korea is considered as a one of leading countries in the world, but not for supercomputing area. In this paper, we describe architecture design of MAHA supercomputing system which is aimed to develop 300 TeraFLOPS system for bio-informatics applications like human genome analysis and protein-protein docking. MAHA supercomputing system is consists of four major parts - computing hardware, file system, system software and bio-applications. MAHA supercomputing system is designed to utilize heterogeneous computing accelerators (co-processors like GPGPUs and MICs) to get more performance/$, performance/area, and performance/power. To provide high speed data movement and large capacity, MAHA file system is designed to have asymmetric cluster architecture, and consists of metadata server, data server, and client file system on top of SSD and MAID storage servers. MAHA system softwares are designed to provide user-friendliness and easy-to-use based on integrated system management component - like Bio Workflow management, Integrated Cluster management and Heterogeneous Resource management. MAHA supercomputing system was first installed in Dec., 2011. The theoretical performance of MAHA system was 50 TeraFLOPS and measured performance of 30.3 TeraFLOPS with 32 computing nodes. MAHA system will be upgraded to have 100 TeraFLOPS performance at Jan., 2013.

Vapor Recognition Using Image Matching of Micro-Array Sensor Response from Portable Electronic Nose (휴대용 전자 후각 장치에서 다채널 마이크로 센서 신호의 영상 정합을 이용한 가스 인식)

  • Yang, Yoon-Seok
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.2
    • /
    • pp.64-70
    • /
    • 2011
  • Portable artificial electronic nose (E-nose) system suffers from noisy fluctuation in surroundings such as temperature, vapor concentration, and gas flow, because its measuring condition is not controled precisely as in the laboratory. It is important to develop a simple and robust vapor recognition technique applicable to this uncontrolled measurement, especially for the portable measuring and diagnostic system which are expanding its area with the improvements in micro bio sensor technology. This study used a PDA-based portable E-nose to collect the uncontrolled vapor measurement signals, and applied the image matching algorithm developed in the previous study on the measured signal to verify its robustness and improved accuracy in portable vapor recognition. The results showed not only its consistent performance under noisy fluctuation in the portable measurement signal, but also an advanced recognition accuracy for 2 similar vapor species which have been hard to discriminate with the conventional maximum sensitivity feature extraction method. The proposed method can be easily applied to the data processing of the ubiquitous sensor network (USN) which are usually exposed to various operating conditions. Furthermore, it will greatly help to realize portable medical diagnostic and environment monitoring system with its robust performance and high accuracy.

Improvement of Personalized Diagnosis Method for U-Health (U-health 개인 맞춤형 질병예측 기법의 개선)

  • Min, Byoung-Won;Oh, Yong-Sun
    • The Journal of the Korea Contents Association
    • /
    • v.10 no.10
    • /
    • pp.54-67
    • /
    • 2010
  • Applying the conventional machine-learning method which has been frequently used in health-care area has several fundamental problems for modern U-health service analysis. First of all, we are still lack of application examples of the traditional method for our modern U-health environment because of its short term history of U-health study. Second, it is difficult to apply the machine-learning method to our U-health service environment which requires real-time management of disease because the method spends a lot of time in the process of learning. Third, we cannot implement a personalized U-health diagnosis system using the conventional method because there is no way to assign weights on the disease-related variables although various kinds of machine-learning schemes have been proposed. In this paper, a novel diagnosis scheme PCADP is proposed to overcome the problems mentioned above. PCADP scheme is a personalized diagnosis method and it makes the bio-data analysis just a 'process' in the U-health service system. In addition, we offer a semantics modeling of the U-health ontology framework in order to describe U-health data and service specifications as meaningful representations based on this PCADP. The PCADP scheme is a kind of statistical diagnosis method which has characteristics of flexible structure, real-time processing, continuous improvement, and easy monitoring of decision process. Upto the best of authors' knowledge, the PCADP scheme and ontology framework proposed in this paper reveals one of the best characteristics of flexible structure, real-time processing, continuous improvement, and easy monitoring among recently developed U-health schemes.

Identification of Differentially Expressed Genes in Ducks in Response to Avian Influenza A Virus Infections

  • Ndimukaga, Marc;Won, Kyunghye;Truong, Anh Duc;Song, Ki-Duk
    • Korean Journal of Poultry Science
    • /
    • v.47 no.1
    • /
    • pp.9-19
    • /
    • 2020
  • Avian influenza (AI) viruses are highly contagious viruses that infect many bird species and are zoonotic. Ducks are resistant to the deadly and highly pathogenic avian influenza virus (HPAIV) and remain asymptomatic to the low pathogenic avian influenza virus (LPAIV). In this study, we identified common differentially expressed genes (DEGs) after a reanalysis of previous transcriptomic data for the HPAIV and LPAIV infected duck lung cells. Microarray datasets from a previous study were reanalyzed to identify common target genes from DEGs and their biological functions. A total of 731 and 439 DEGs were identified in HPAIV- and LPAIV-infected duck lung cells, respectively. Of these, 227 genes were common to cells infected with both viruses, in which 193 genes were upregulated and 34 genes were downregulated. Functional annotation of common DEGs revealed that translation related gene ontology (GO) terms were enriched, including ribosome, protein metabolism, and gene expression. REACTOME analyses also identified pathways for protein and RNA metabolism as well as for tissue repair, including collagen biosynthesis and modification, suggesting that AIVs may evade the host defense system by suppressing host translation machinery or may be suppressed before being exported to the cytosol for translation. AIV infection also increased collagen synthesis, showing that tissue lesions by virus infection may be mediated by this pathway. Further studies should focus on these genes to clarify their roles in AIV pathogenesis and their possible use in AIV therapeutics.

Patent data analysis using clique analysis in a keyword network (키워드 네트워크의 클릭 분석을 이용한 특허 데이터 분석)

  • Kim, Hyon Hee;Kim, Donggeon;Jo, Jinnam
    • Journal of the Korean Data and Information Science Society
    • /
    • v.27 no.5
    • /
    • pp.1273-1284
    • /
    • 2016
  • In this paper, we analyzed the patents on machine learning using keyword network analysis and clique analysis. To construct a keyword network, important keywords were extracted based on the TF-IDF weight and their association, and network structure analysis and clique analysis was performed. Density and clustering coefficient of the patent keyword network are low, which shows that patent keywords on machine learning are weakly connected with each other. It is because the important patents on machine learning are mainly registered in the application system of machine learning rather thant machine learning techniques. Also, our results of clique analysis showed that the keywords found by cliques in 2005 patents are the subjects such as newsmaker verification, product forecasting, virus detection, biomarkers, and workflow management, while those in 2015 patents contain the subjects such as digital imaging, payment card, calling system, mammogram system, price prediction, etc. The clique analysis can be used not only for identifying specialized subjects, but also for search keywords in patent search systems.

Extraction Equilibria of Acrylic Acid with Amine Extractants (아민계 추출제에 의한 아크릴산의 추출 평형)

  • Lee, Yong Hwa;Lee, Jun;Hong, Yeon Ki
    • Clean Technology
    • /
    • v.20 no.2
    • /
    • pp.103-107
    • /
    • 2014
  • Acrylic acid is a commodity chemical which is applicable for various industries such as polymer and textile industry. Currently, it has been produced by chemical synthesis from petroleum. However, due to the high price of petroleum and global $CO_2$ emission, renewable materials such as sugar are interesting alternative carbon sources for the biological production of acrylic acid. For an economic production of acrylic acid from renewable carbon sources, a cost effective separation process for acrylic acid should be needed. In this study, reactive extraction by TOA (tri-n-octylamine) was used for the recovery of acrylic acid from its aqueous solutions. The effects of polarity of diluents and concentration of TOA on extraction equilibrium were investigated. The extraction efficiency was proportional to concentration of TOA and polarity of diluents and its value was more than 95% in the case of sufficient concentration of TOA. From IR spectroscopy, it was concluded that the ratio of (1,1) acid-amine complex was increased and the ratio of acid dimer was decreased with concentration of TOA. Equilibrium model based on IR spectroscopy was well fitted with experimental data.

MDCT Angiography of the Subclavian Artery Thrombosis of the 3D Findings (쇄골하동맥 혈전증에서의 MDCT 혈관조영술의 3D 영상)

  • Kweon, Dae Cheol
    • Journal of the Korean Society of Radiology
    • /
    • v.12 no.7
    • /
    • pp.813-819
    • /
    • 2018
  • To demonstrate the 3D usefulness of MDCT, a 73-year-old male patient with subclavian thrombosis was obtained 3D images of maximum intensity projection (MIP), volume rendering, and multiplanar reformation (MPR) to clearly detect and locate the subclavian artery. The data will be provided to the patient for diagnosis and treatment. The scan data were acquired as 3D CT images MIP, volume rendering, curved MPR, and virtual endoscopy images. In the 3D program, the ascending aorta was measured as 364.28 HU, the left carotid artery was 413.77 HU, and the left subclavian artery was 15.72 HU. MIP coronal image shows the closure of the subclavian artery in the left side. Three-dimensional volume images were obtained with 100% permeability and 87-1265 HU. The coronal curved MPR and sagittal curved MPR images show the closure of the subclavian artery due to thrombus using 3D image processing. In the case of subclavian arterial occlusion due to thrombosis, the patient is scanned with MDCT and 3D image processing can be used to confirm occlusion of subclavian artery.