• Title/Summary/Keyword: 미세플라스틱

Search Result 166, Processing Time 0.032 seconds

Research Trend on the Accumulation Routes of Microplastics in Soil and Their Analytical Methodologies (토양 내 미세플라스틱의 축적경로 및 분석기법 연구 동향)

  • Choi, Hyung-Jun;An, Jinsung;Choi, Suk Soon
    • Applied Chemistry for Engineering
    • /
    • v.31 no.4
    • /
    • pp.360-367
    • /
    • 2020
  • In this study, the accumulation and distribution routes of microplastics in soil environment were examined, and their analytical methodologies were summarized. Density separation and removal process of inhibition materials were introduced for the separation of microplastics in soil and the basic principles and limitations of quantitative and qualitative analyses including pyrolysis gas chromatography mass spectrometry, µ-Raman spectrometry, fourier transform infrared spectrometry, and microscopes were investigated. Chemical extraction methods for the analysis of mediated hazardous substance (additives and sorbed matters) in microplastics were also discussed with focusing on in vitro bioaccessibility assay for the human oral exposure route. Based on the described methodologies for the analysis of microplastics in soil, it is expected that these methods enable to select appropriate analysis techniques in consideration of medium state, contamination level and sample quantity.

항로표지 기반의 해양환경정보 활용 방안 연구

  • 최원진;문성배;정민;이신걸;송재욱
    • Proceedings of the Korean Institute of Navigation and Port Research Conference
    • /
    • 2021.11a
    • /
    • pp.46-47
    • /
    • 2021
  • 항로표지 기반 정보의 디지털화 및 표준화를 위해 개발 중인 스마트 항로표지는 단순한 항로표지 및 수집 하드웨어가 아닌 해양정보 플랫폼의 개념으로, 해양에서 분석하고 싶은 정보가 있을 경우 스마트 항로표지에 센서 등을 설치하여 정보를 분석할 수 있다. 이에 항로표지를 이용하여 방사능, 미세플라스틱 및 해양부착생물에 관련된 정보를 생성하여 일반사용자, 기관 및 연구자에게 제공함으로써 일본 오염수 해양 방출, 플라스틱 사용의 증가로 인해 발생하는 미세플라스틱 및 지구온난화 등의 기후변화로 인한 해양 생태계 및 환경의 변화에 대응하고자 한다.

  • PDF

Development of Analytical Method for Microplastics in Seawater (해수에 잔류하는 미세플라스틱의 정성정량 분석법 확립)

  • Chae, Doo-Hyun;Kim, In-Sung;Song, Young Kyoung;Kim, Sungwoo;Kim, Seung-Kyu
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.19 no.1
    • /
    • pp.88-98
    • /
    • 2014
  • Despite of emerging and increasing concerns to microplastics, no standard methodology has not been proposed for determination of microplastics. This study aims to develop the analysis method for microplastics in seawater by overviewing methodologies proposed by previous studies and by assessing some processes in those methodologies which possibly cause uncertainties in microplastic determination. Furthermore, we present preliminary results of distribution characteristics of microplastics in seawater of Incheon/Kyeonggi coastal region which is based on our new methodology. Microplastics in surface microlayer (SML) and subsurface water (SSW) were collected using mesh screen and planktonic nets (trawl net with $330{\mu}m$ mesh size and hand net with $20{\mu}m$ mesh size), respectively. Microplastics with < $300{\mu}m$ was predominant, indicating hand net as the better collection tool for SSW. As for SML, FT-IR based microplastic concentration was well matched with naked-eye based concentration which has been used in most of previous studies. However, a poor relationship was observed for SSW, indicating that concentration data of previous SSW studies should be corrected. Incheon/Kyeonggi bay seawater contained the similar concentration range with those in coastal region of the Nakdong River. Our methodology can be used as a basic tool for further microplatic studies.

Study on Structural Strength and Application of Composite Material on Microplastic Collecting Device (휴대형 미세플라스틱 수거 장비 경량화 부품 설계 및 구조강도 평가)

  • Myeong-Kyu, Kim;Hyoung-Seock, Seo;Hui-Seung, Park;Sang-Ho, Kim
    • Composites Research
    • /
    • v.35 no.6
    • /
    • pp.447-455
    • /
    • 2022
  • Currently, the problem of pollution of the marine environment by microplastics is emerging seriously internationally. In this study, to develop a lightweight portable microplastic collection device, the types and number of microplastics in 21 coastal areas nationwide in Korea were investigated. And CFRP (Carbon Fiber Reinforced Plastic), GFRP (Glass Fiber Reinforced Plastic), ABS (Acrylonitrile Butadiene Styrene copolymer) and aluminum were applied for design and analysis of microplastic collection device to have the durability, corrosion resistance and lightweight. As a result of sample collection and classification from the shore, it was confirmed that microplastics were distributed the most in Hamdeok beach, and the polystyrene was found to be mainly distributed microplastics. Particle information through coastal field survey and CFD (Computational Fluid Dynamics) analysis were used to analyze the flow rate and distribution of particles such as sand and impurities, which were applied to the structural analysis of the cyclone device using the finite element method. As a result of structural analysis considering the particle impact inside the cyclone device, the structural safety was examined as remarkable in the order of CFRP, GFRP, aluminum, and ABS. In the view of weight reduction, CFRP could be reduced in weight by 53%, GFRP by 47%, and ABS by 61% compared to aluminum for the cyclone device.

Microplastics Intellectual Network Analysis based on Bigdata (빅데이터 기반한 미세플라스틱 지적네트워크 분석)

  • Kim, Younghee;Chang, Kwanjong
    • Journal of Convergence for Information Technology
    • /
    • v.12 no.4
    • /
    • pp.239-259
    • /
    • 2022
  • Since 2019, research on microplastics has been actively conducted around the world, so analyzing the differences between domestic and foreign microplastics research can be a milestone in establishing the direction of domestic research. In this study, microplastic papers from KCI and WoS were extracted and the differences between domestic and foreign studies were analyzed using a network analysis methodology based on big data such as author keyword co-occurrence word analysis, thesis co-citation analysis, and author co-citation analysis. As a result of the analysis, the analysis of the research topic confirmed that studies that could affect the human body and the treatment of microplastics in daily life were additionally needed in Korea. In the analysis of the depth of thesis citation that examines the quality of research, it was found that Korea was still insufficient at 2.25 overseas and 1.39 in Korea. In the analysis of the composition of the joint research front, where various researchers participate and share information, 3 out of 22 clusters in Korea are Star type. In the case of overseas, all 19 clusters have a mesh structure, so it was confirmed that information flow and sharing were insufficient in specific research fields in Korea. These research results confirmed the need to expand the research topic of microplastics, improve the quality of research, and improve the research promotion system in which various researchers participate. In addition, if the automation program is developed based on topic modeling, it will be possible to build a system capable of real-time analysis.

Adsorption Mechanisms of Heavy Metals on Microplastics in Aquatic Environments: A Review (수환경에서 미세플라스틱의 중금속 흡착특성과 메커니즘에 관한 고찰)

  • Taejung Ha;Junyong Heo;Subeen Kim;Jong Sung Kim;Minjune Yang
    • The Journal of Engineering Geology
    • /
    • v.33 no.4
    • /
    • pp.701-716
    • /
    • 2023
  • Microplastics (<5 mm diameter) in aquatic environments adsorb heavy metals, potentially exposing humans to their toxic effects via food chains. We investigated factors influencing the adsorption of heavy metals on microplastics in aquatic environments, examining their adsorption processes and mechanisms. Adsorption characteristics vary with polymer type, crystallinity, particle size, and environmental conditions (pH, temperature, weathering), and the adsorption capacity for heavy metals increases with weathering and reduction in polymer particle size. However, correlations between environment temperature, polymer crystallinity, and adsorption capacity for heavy metals could not be confirmed. The adsorption behavior of heavy metals can be explained in terms of physicochemical adsorption processes and evaluated through adsorption kinetics and isothermal studies, with multiple mechanisms usually being involved. An understanding of the adsorption of heavy metals by microplastics should aid evaluation of the potential risks of microplastics in aquatic environments.

Review of Remote Sensing Applicability for Monitoring Marine Microplastics (해양 미세플라스틱 모니터링을 위한 원격탐사 적용 가능성 검토)

  • Park, Suhyeon;Kim, Changmin;Jeong, Seongwoo;Jang, Seonggan;Kim, Subeen;Ha, Taejung;Han, Kyung-soo;Yang, Minjune
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.5_3
    • /
    • pp.835-850
    • /
    • 2022
  • Microplastics have arisen as a worldwide environmental concern, becoming ubiquitous in all marine compartments, and various researches on monitoring marine microplastics are being actively conducted worldwide. Recently, application of a remote detection technology that enables large-scale real-time observation to marine plastic monitoring has been conducted overseas. However, in South Korea, there is little information linking remote detection to marine microplastics and some field studies have demonstrated remote detection of medium- and large-sized marine plastics. This study introduces research cases with remote detection of marine plastics in South Korea and overseas, investigates potential feasibility of using the remote detection technology to marine microplastic monitoring, and suggests some future works to monitor marine microplastics with the remote detection.

Research Possibility of Using Quartz Crystal Microbalance for Polystyrene Nanoplastics Adsorption to SiO2 Surface (수정진동자미세저울을 활용한 폴리스티렌 나노플라스틱의 SiO2 표면흡착 연구 가능성)

  • Myeong, Hyeonah;Kim, Juhyeok;Lee, Jin-Yong;Kwon, Kideok D.
    • Korean Journal of Mineralogy and Petrology
    • /
    • v.34 no.4
    • /
    • pp.265-275
    • /
    • 2021
  • Findings of microplastics and nanoplastics from diverse natural environments have increased demand for research of the fate and transport of the potentially toxic plastic particles in soils and groundwater. Weathering of microplastics would generate a significant amount of nanoplastics, but nanoplastics research is scarce because of technical difficulties in detecting nanoplastics in environments and analyzing nanoplastics adsorption to mineral surfaces. In the current study, we tested a possibility using quartz crystal microbalance (QCM) for application to nanoplastics adsorption analysis on mineral surfaces. In silica (SiO2)-packed column experiments, a measurable adsorption capacity for polystyrene nanoparticles often requires injection of unrealistically high ionic strengths or concentrated nanoplastic particles. The current test shows that QCM can measure polystyrene nanoplastics adsorbed onto SiO2 surface under the low ionic strengths and nanoplastics concentrations, where typical column experiments cannot. QCM is a promising tool for understanding the interaction between nanoplastics and mineral surfaces and thus transport of nanoplastics in soils and groundwater.

Identification of Microplastics in Sea Salts by Raman Microscopy and FT-IR Microscopy (라만 및 FT-IR 현미경을 이용한 천일염 중 미세플라스틱 분석)

  • Cho, Soo-Ah;Cho, Won-Bo;Kim, Su-Bin;Chung, Jae-Hak;Kim, Hyo-Jin
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.243-251
    • /
    • 2019
  • Microplastics (MP) are found in large quantities in the oceans, posing a major threat to the ecosystem. In Korea, MPs have been reported to be detected in sea salts. In order to analyze MPs, information on their composition, size, and shape is required. FT-IR microscopy is used frequently to measure sizes larger than 20 ㎛. Recently, however, Raman microscopy, which can analyze ultrafine plastics below 20 ㎛, has been applied extensively. In this study, 10.0 g samples of commercially available salts were dissolved and filtered through a 45 ㎛ mesh filter with a size of 25.4 mm × 25.4 mm. These filtered samples were then analyzed by both FT-IR microscopy and Raman microscopy. A total of four MPs, including three polyethylene (PE) of size 70-100 ㎛ and a polypropylene (PP) of size 170 ㎛, were detected by FT-IR microscopy, while 10 MPs, including nine PE of size 10-120 ㎛ and one polystyrene (PS) of size 40 ㎛, were detected by Raman microscopy. Approximately, 1,000 MPs/kg was estimated, which was almost two times higher than the previous reported levels (~550-681 particles/kg in sea salts); this is because Raman microscopy can detect much smaller MPs than FT-IR microscopy. A total of 113 particles were found using Raman microscopy: Carbon (35, 31.5 %), minerals (28, 25 %), and glass (16, 14.4 %) were dominant, forming around 70% of the total, but MPs (10, 8.8 %) and cellulose (5, 4.5 %) were also found. Raman microscopy has great potential as an accurate method for measuring MPs, as it can measure smaller size MPs than FT-IR microscopy. It also has a reduced sample preparation time.

Zooplankton and Neustonic Microplastics in the Surface Layer of Yeosu Coastal Areas (여수 연안 표층에 출현하는 동물플랑크톤과 미세플라스틱)

  • Kang, Hui Seung;Seo, Min Ho;Yang, Yun Seok;Park, Eun-Ok;Yoon, Yang Ho;Kim, Daejin;Jeong, Hyeon Gyeong;Soh, Ho Young
    • Korean Journal of Environmental Biology
    • /
    • v.36 no.1
    • /
    • pp.11-20
    • /
    • 2018
  • In planktonic ecosystems, the microplastics are considered as a potential food source for the zooplankton. To study a relationship between the zooplankton and the neustonic microplastics, a research experiment was carried out during May in the surface layers of the Yeosu coastal areas including Yeoja Bay, Gamak Bay, Yeosuhae Bay, and Botdol Sea. A neustonic zooplankton net (mesh size $300{\mu}m$; mouth area $30cm{\times}18cm$) was towed from the side of the ship in the event that it would not be affected by waves crashing by the ship at a speed of ca. 2.5 knots. All of the microplastic particles were separated from the zooplankton. The zooplankton and microplastics were appearing in a range of 61 to $763indiv.m^{-3}$ and 0.0047 to $0.3471particle\;m^{-2}$, respectively. It was noted that the Acartia omorii, Paracalanus parvus s. l., Labidocera euchaeta, A. hongi, decapod larvae, and cirriped larvae were predominantly seen in the experiment. For verifying relationships between zooplankton and environmental factors in addition to microplastics, a model redundancy analysis (RDA) was performed. The zooplankton were divided into two groups on the basis of feeding types (i.e. particle feeders, and carnivores), and the associated zooplankton larvae were also separately considered. A review of the additional environmental factors such as water temperature, salinity, turbidity, chlorophyll-${\alpha}$ concentration, diatom density, and dinoflagellate density were also contained in the analysis. The results showed that a noted zooplankton abundance had no close relation with the occurring number of microplastic particles, but rather was significantly related with other noted environmental factors such as temperature, salinity, turbidity, and chlorophyll-${\alpha}$ concentration. This fact implies that most zooplankton can feed themselves as a unit, by selecting the most likely available nutritious foods, rather than microplastics under the circumstance of food-richness areas, such what food resources are available as in the location of coastal waters.