DOI QR코드

DOI QR Code

Zooplankton and Neustonic Microplastics in the Surface Layer of Yeosu Coastal Areas

여수 연안 표층에 출현하는 동물플랑크톤과 미세플라스틱

  • Kang, Hui Seung (Faculty of Marine Technology, Chonnam National University) ;
  • Seo, Min Ho (Marine Ecology Research Center) ;
  • Yang, Yun Seok (Faculty of Marine Technology, Chonnam National University) ;
  • Park, Eun-Ok (Fisheries Science Institute) ;
  • Yoon, Yang Ho (Faculty of Marine Technology, Chonnam National University) ;
  • Kim, Daejin (Training Ship Administrative Center, Chonnam National University) ;
  • Jeong, Hyeon Gyeong (Marine Bio-Resources and Information Center, National Marine Biodiversity Institute of Korea) ;
  • Soh, Ho Young (Faculty of Marine Technology, Chonnam National University)
  • 강희승 (전남대학교 해양기술학부) ;
  • 서민호 (바다생태연구소) ;
  • 양윤석 (전남대학교 해양기술학부) ;
  • 박은옥 (전남대학교 수산과학연구소) ;
  • 윤양호 (전남대학교 해양기술학부) ;
  • 김대진 (전남대학교 선박실습센터) ;
  • 정현경 (국립해양생물자원관 국가해양생명자원센터) ;
  • 서호영 (전남대학교 해양기술학부)
  • Received : 2017.11.14
  • Accepted : 2018.02.25
  • Published : 2018.03.31

Abstract

In planktonic ecosystems, the microplastics are considered as a potential food source for the zooplankton. To study a relationship between the zooplankton and the neustonic microplastics, a research experiment was carried out during May in the surface layers of the Yeosu coastal areas including Yeoja Bay, Gamak Bay, Yeosuhae Bay, and Botdol Sea. A neustonic zooplankton net (mesh size $300{\mu}m$; mouth area $30cm{\times}18cm$) was towed from the side of the ship in the event that it would not be affected by waves crashing by the ship at a speed of ca. 2.5 knots. All of the microplastic particles were separated from the zooplankton. The zooplankton and microplastics were appearing in a range of 61 to $763indiv.m^{-3}$ and 0.0047 to $0.3471particle\;m^{-2}$, respectively. It was noted that the Acartia omorii, Paracalanus parvus s. l., Labidocera euchaeta, A. hongi, decapod larvae, and cirriped larvae were predominantly seen in the experiment. For verifying relationships between zooplankton and environmental factors in addition to microplastics, a model redundancy analysis (RDA) was performed. The zooplankton were divided into two groups on the basis of feeding types (i.e. particle feeders, and carnivores), and the associated zooplankton larvae were also separately considered. A review of the additional environmental factors such as water temperature, salinity, turbidity, chlorophyll-${\alpha}$ concentration, diatom density, and dinoflagellate density were also contained in the analysis. The results showed that a noted zooplankton abundance had no close relation with the occurring number of microplastic particles, but rather was significantly related with other noted environmental factors such as temperature, salinity, turbidity, and chlorophyll-${\alpha}$ concentration. This fact implies that most zooplankton can feed themselves as a unit, by selecting the most likely available nutritious foods, rather than microplastics under the circumstance of food-richness areas, such what food resources are available as in the location of coastal waters.

동물플랑크톤과 미세플라스틱과의 상관성을 파악하기 위해 2015년 5월 12일부터 14일까지 여수근해 (여자만, 가막만, 여수해만, 봇돌바다) 총 10개의 정점에서 수표성 동물플랑크톤과 미세플라스틱을 채집하였다. 동물플랑크톤은 요각류 13종을 포함해 총 26개의 분류군이 출현하였고, 그 중 요각류가 가장 높은 비율을 차지하였다. 동물플랑크톤의 출현 개체수는 $61{\sim}763indiv.m^{-3}$, 미세플라스틱은 $0.0047{\sim}0.3471particle\;m^{-2}$의 범위였다. 미세플라스틱은 주로 스트로폼, 페인트 조각, 섬유 조각 등이 발견되었다. Acartia omorii, Paracalanus parvus s. l., Labidocera euchaeta, A. hongi, 십각류 유생, 따개비 유생이 우점적으로 출현하였다. 동물플랑크톤을 먹이식성에 따라 입자식성 동물플랑크톤과 육식성 동물플랑크톤으로 구분하였고, 동물플랑크톤 건조중량도 측정하였으며, 동물플랑크톤 유생은 따로 구분하였다. 이밖에 측정한 환경요인으로는 수온, 염분, 탁도, Chl-${\alpha}$ 농도, 식물플랑크톤 (규조류, 와편모조류) 밀도를 조사하였다. 동물플랑크톤과 미세플라스틱과의 상관성을 분석하기 위해 RDA를 실시한 결과 동물플랑크톤은 미세플라스틱보다 다른 환경요인인 수온, 염분, 탁도, Chl-${\alpha}$ 농도와 밀접한 상관성을 나타냈다. 이는 연안해역과 같이 먹이가 풍부한 해역에서 미세플라스틱이 동물플랑크톤 주요 먹이로서 과대평가되어 있음을 시사할 수 있다.

Keywords

References

  1. Allsopp M, A Walters, D Santillo and P Johnston. 2006. Plastic debris in the world's oceans. UNEP Report. p. 44.
  2. Arthur C, J Baker and H Bamford. 2009. In proceedings of the international research workshop on the occurrence, effects and fate of microplastic. Marine Debris. NOAA. p. 530.
  3. Barnes DKA, F Galgani, RC Thompson and M Barlaz. 2009. Accumulation and fragmentation of plastic debris in global environments. Philos. Trans. R. Soc. B-Biol. Sci. 364:1985- 1998. https://doi.org/10.1098/rstb.2008.0205
  4. Barreiros JP and J Barcelos. 2001. Plastic ingestion by a leatherback turtle Dermochelys coriacea from the Azores (NE Atlantic). Mar. Pollut. Bull. 42:1196-1197. https://doi.org/10.1016/S0025-326X(01)00215-6
  5. Boerger C, G Lattin, SL Moore and CJ Moore. 2010. Plastic ingestion by planktivorous fishes in the North Pacific Central Gyre. Mar. Pollut. Bull. 60:2275-2278. https://doi.org/10.1016/j.marpolbul.2010.08.007
  6. Browne MA, A Dissanayake, TS Galloway, DM Lowe and RC Thompson. 2008. Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L.). Environ. Sci. Technol. 42:5026-5031. https://doi.org/10.1021/es800249a
  7. Calbet A, F Carlotti and R Gaudy. 2007. The feeding ecology of the copepod Centropages typicus (Kroyer). Progr. Oceanogr. 72:137-150. https://doi.org/10.1016/j.pocean.2007.01.003
  8. Chihara M and M Murano. 1997. An Illustrated Guide to Marine Plankton in Japan. Tokai Univ. Press, Tokyo. p. 1547.
  9. Choi YK, SC Eun and YH Lee. 2005. Distributions of temperature and salinity in relation to ebb, turn of tide and flood of the Bottol Bada in July, 2004. J. Environ. Sci. Int. 14:165-175.
  10. Cole M, P Lindeque, E Fileman, C Halsband, R Goodhead, J Moger and TS Galloway. 2013. Microplastic ingestion by zooplankton. Environ. Sci. Technol. 47:6646-6655. https://doi.org/10.1021/es400663f
  11. Collignon A, JH Hecq, F Glagani, P Voisin, F Collard and A Goffart. 2012. Neustonic microplastic and zooplankton in the North Western Mediterranean Sea. Mar. Pollut. Bull. 64:861-864. https://doi.org/10.1016/j.marpolbul.2012.01.011
  12. Crimmins BS, PD Brown, DP Kelso and GD Foster. 2002. Bioaccumulation of PCBs in aquatic biota from a tidal freshwater marsh ecosystem. Arch. Environ. Contam. Toxicol. 42:396-404. https://doi.org/10.1007/s00244-001-0047-9
  13. Cupp EE. 1943. Marine plankton diatoms of the west coast of north America. Bull. Scripps Inst. Oceanogr. Univ. California 5:1-237.
  14. Desforges JP, M Galbraith and PS Ross. 2015. Ingestion of microplastics by zooplankton in the Northeast Pacific Ocean. Arch. Environ. Contam. Toxicol. 69:320-330. https://doi.org/10.1007/s00244-015-0172-5
  15. Donaghayl PL and F Small. 1979. Food selection capabilities of the estuarine copepod Acartia clause. Mar. Biol. 52:137- 146. https://doi.org/10.1007/BF00390421
  16. Eriksen M, LCM Lebreton, HS Carson, M Thiel, CJ Moore, JC Borerro, F Galgani, PG Ryan and J Reisser. 2014. Plastic pollution in the world's oceans: more than 5 trillion plastic pieces weighing over 250,000 tons afloat at sea. Plos One 9:1-15.
  17. Franeker JA, C Blaize and J Danielsen. 2011. Monitoring plastic ingestion by the northern fulmar Fulmarus glacialis in the North Sea. Environ. Pollut. 159:2609-2615. https://doi.org/10.1016/j.envpol.2011.06.008
  18. Giesecke R and EH Gonzalez. 2008. Reproduction and feeding of Sagitta enflata in the Humboldt Current system off Chile. ICES J. Mar. Sci. 65:361-370. https://doi.org/10.1093/icesjms/fsn030
  19. Hallegraeff GM, CJS Bolch, DRA Hill, I Jameson, JM LeRoi, A McMinn, S Murray, MF de Salas and K Saunders. 2010. Algae of Australia: Phytoplankton of Temperate Coastal Waters. CSIRO Publishing, Canbella. p. 432.
  20. Hirai H, H Takada, Y Ogata, R Yamashita, K Mizukawa, M Saha and ER Zettler. 2011. Organic micropollutants in marine plastics debris from the open ocean and remote and urban beaches. Mar. Pollut. Bull. 62:1683-1692. https://doi.org/10.1016/j.marpolbul.2011.06.004
  21. Huntley ME, KG Barthel and JL Star. 1983. Particle rejection by Calanus pacificus: discrimination between similarly sized particles. Mar. Biol. 74:151-160. https://doi.org/10.1007/BF00413918
  22. Kang JH, OY Kwon and WJ Shim. 2015. Potential threat of microplastics to zooplanktivores in the surface waters of the Southern Sea of Korea. Arch. Environ. Contam. Toxicol. 69:340-351. https://doi.org/10.1007/s00244-015-0210-3
  23. Landry MR. 1978. Predatory Feeding Behavior of a Marine Copepod, Labidocera trispinosa. Limnol. Oceanogr. 23: 1103-1113. https://doi.org/10.4319/lo.1978.23.6.1103
  24. Lattin GL, CJ Moore, AF Zeller, SL Moore and SB Weisberg. 2004. A comparison of neustonic plastic and zooplankton at different depths near the southern California shore. Mar. Pollut. Bull. 49:291-294. https://doi.org/10.1016/j.marpolbul.2004.01.020
  25. Law K, S Moret-Ferguson, N Maximenko, G Proskurowski, E Peacock, J Ganfer and C Reddy. 2010. Plastic accumulation in the North Atlantic Subtropical Gyre. Science 329: 1185-1188. https://doi.org/10.1126/science.1192321
  26. Lima ARA, MF Costa and M Barletta. 2014. Distribution patterns of microplastics within the plankton of a tropical estuary. Environ. Res. 132:146-155. https://doi.org/10.1016/j.envres.2014.03.031
  27. Mialet B, J Gouzou, F Azemar, T Maris, C Sossou, N Toumi, S Van Damme, P Meire and M Tackx. 2011. Response of zooplankton to improving water quality in the Scheldt estuary Belgium. Estuar. Coast. Shelf Sci. 93:47-57. https://doi.org/10.1016/j.ecss.2011.03.015
  28. Moon SY, HJ Oh and HY Soh. 2010. Seasonal variation of zooplankton communities in the southern coastal waters of Korea. Ocean Polar Res. 32:411-426. https://doi.org/10.4217/OPR.2010.32.4.411
  29. Moore CJ, SL Moore, MK Leecaster and SB Weisberg. 2001. A comparison of plastic and plankton in the North Pacific central gyre. Mar. Pollut. Bull. 42:1297-1300. https://doi.org/10.1016/S0025-326X(01)00114-X
  30. Moore CJ, SL Moore, SB Weisberg, GL Lattin and AF Zellers. 2002. A comparison of plastic and zooplankton abundance in southern California's coastal waters. Mar. Pollut. Bull. 44:1035-1038. https://doi.org/10.1016/S0025-326X(02)00150-9
  31. Omura T, M Iwataki, VM Borja, H Takayama and Y Fukuyo. 2012. Marine Phytoplankton of the Western Pacific. Kouseisha Kouseikaku, Tokyo. p. 160.
  32. Paffenhofer GA. 1984. Does Paracalanus feed with a leaky sieve? Limnol. Oceanogr. 29:155-160. https://doi.org/10.4319/lo.1984.29.1.0155
  33. Pichel WG, JH Churnside, TS Veenstra, DG Foley, KS Friedman, RE Brainard and P Clemente-Colon. 2007. Marine debris collects within the North Pacific subtropical convergence zone. Mar. Pollut. Bull. 54:1207-1211. https://doi.org/10.1016/j.marpolbul.2007.04.010
  34. Price HJ. 1988. Feeding mechanisms in marine and freshwater zooplankton. Bull. Mar. Sci. 43:327-343.
  35. Ryan PG, AD Connell and BD Gardner. 1988. Plastic ingestion and PCBs in seabirds: Is there a relationship? Mar. Pollut. Bull. 19:174-176. https://doi.org/10.1016/0025-326X(88)90674-1
  36. Saiz E and T Kiorboe. 1995. Predatory and suspension feeding of the copepod Acartia tonsa in turbulent environments. Mar. Ecol. Prog. Ser. 122:147-158. https://doi.org/10.3354/meps122147
  37. SCOR-UNESCO. 1966. Determination of photosynthetic pigments. Monogr. Oceanogr. Methodology 1:11-18.
  38. Setala O, V Fleming-Lehtinen and M Lehtiniemi. 2014. Ingestion and transfer of microplastics in the planktonic food web. Environ. Pollut. 185:77-83. https://doi.org/10.1016/j.envpol.2013.10.013
  39. Sherman K. 1963. Pontellid copepod distribution in relation to surface water types in the central North Pacific. Limnol. Oceanogr. 8:214-227. https://doi.org/10.4319/lo.1963.8.2.0214
  40. Soh HY, IT Lee, YH Yoon, SD Choi, SN Lee, MI Han and WB Lee. 2002. Species composition and occurrence patterns of zooplankton in Gamag Bay. Korean J. Environ. Biol. 20: 118-129.
  41. Vieira NBA. 2011. Spatial and temporal variability of water quality and zooplankton in an artisanal salina. J. Sea Res. 65:293-303. https://doi.org/10.1016/j.seares.2011.01.001
  42. Wright SL, RC Thompson and TS Galloway. 2013. The physical impacts of microplastics on marine organisms: a review. Environ. Pollut. 178:483-492. https://doi.org/10.1016/j.envpol.2013.02.031
  43. Yeosu Regional Office of Oceans and Fisheries. 2016. http://yoeosu.mof.go.kr.
  44. Zamora-Terol S, DA Mckinnon and E Saiz. 2014. Feeding and egg production of Oithona spp. in tropical waters of North Queensland, Australia. J. Plankton Res. 36:1047-1059. https://doi.org/10.1093/plankt/fbu039
  45. Zettler ER, TJ Mincer and LAA Zettler. 2013. Life in the "plastispere": microbial communities on plastic marine debris. Environ. Sci. Technol. 47:7137-7146. https://doi.org/10.1021/es401288x