DOI QR코드

DOI QR Code

Research Possibility of Using Quartz Crystal Microbalance for Polystyrene Nanoplastics Adsorption to SiO2 Surface

수정진동자미세저울을 활용한 폴리스티렌 나노플라스틱의 SiO2 표면흡착 연구 가능성

  • Myeong, Hyeonah (Department of Geology, Kangwon National University) ;
  • Kim, Juhyeok (Department of Geology, Kangwon National University) ;
  • Lee, Jin-Yong (Department of Geology, Kangwon National University) ;
  • Kwon, Kideok D. (Department of Geology, Kangwon National University)
  • 명현아 (강원대학교 자연과학대학 지질학과) ;
  • 김주혁 (강원대학교 자연과학대학 지질학과) ;
  • 이진용 (강원대학교 자연과학대학 지질학과) ;
  • 권기덕 (강원대학교 자연과학대학 지질학과)
  • Received : 2021.12.07
  • Accepted : 2021.12.27
  • Published : 2021.12.31

Abstract

Findings of microplastics and nanoplastics from diverse natural environments have increased demand for research of the fate and transport of the potentially toxic plastic particles in soils and groundwater. Weathering of microplastics would generate a significant amount of nanoplastics, but nanoplastics research is scarce because of technical difficulties in detecting nanoplastics in environments and analyzing nanoplastics adsorption to mineral surfaces. In the current study, we tested a possibility using quartz crystal microbalance (QCM) for application to nanoplastics adsorption analysis on mineral surfaces. In silica (SiO2)-packed column experiments, a measurable adsorption capacity for polystyrene nanoparticles often requires injection of unrealistically high ionic strengths or concentrated nanoplastic particles. The current test shows that QCM can measure polystyrene nanoplastics adsorbed onto SiO2 surface under the low ionic strengths and nanoplastics concentrations, where typical column experiments cannot. QCM is a promising tool for understanding the interaction between nanoplastics and mineral surfaces and thus transport of nanoplastics in soils and groundwater.

토양과 지하수에서 미세플라스틱과 나노플라스틱이 검출되면서 자연환경에서의 플라스틱 입자에 대한 거동 연구 필요성이 강조되고 있다. 자연환경에서 풍화과정을 통해 생성되는 2차 나노플라스틱은 그 양이 많을 것으로 예상되지만, 토양과 지하수 내 나노플라스틱에 대한 연구는 분석 기술의 제약으로 인해 플라스틱 거동 연구가 부족한 상태이다. 이번 연구에서는 수 ng/cm2 수준의 흡착량을 측정할 수 있는 수정진동자미세저울(quartz crystal microbalance, QCM)의 광물표면-나노플라스틱 상호작용 규명연구 활용 가능성을 확인하였다. 일반 컬럼실험에서는 SiO2 표면과 폴리스티렌(polystyrene) 나노플라스틱의 흡착을 관찰하기 위해 담수나 지하수의 이온세기 수준을 넘거나 높은 농도의 나노플라스틱을 주입하는데, 이번 QCM 실험에서는 컬럼실험에서 측정이 불가능한 낮은 이온세기와 플라스틱 농도에서 나노플라스틱의 흡착량을 측정할 수 있었다. 광물표면과 나노플라스틱의 상호작용 나아가 토양과 지하수 자연환경에서 나노플라스틱 거동을 이해하는 데 QCM 연구가 크게 기여할 것으로 기대된다.

Keywords

Acknowledgement

본 결과물은 환경부의 재원으로 한국환경산업기술원의 미세플라스틱 측정 및 위해성 평가 기술개발사업의 지원을 받아 연구되었습니다(2020003110010). 해당 원고에 조언을 해주신 익명의 심사자께 감사드립니다.

References

  1. Agnese, C., D'Asaro, F. and Giordano, G., 1988, Estimation of the time scale of the geomorphologic instantaneous unit hydrograph from effective streamflow velocity. Water Resources Research, 24, 969-978. https://doi.org/10.1029/WR024i007p00969
  2. Alimi, O.S., Farner Budarz, J., Hernandez, L.M. and Tufenkji, N., 2018, Microplastics and nanoplastics in aquatic environments: Aggregation, deposition, and enhanced contaminant transport. Environmental Science & Technology, 52, 1704-1724. https://doi.org/10.1021/acs.est.7b05559
  3. Bhattacharjee, S., 2016, DLS and zeta potential-what they are and what they are not? Journal of Controlled Release, 235, 337-351. https://doi.org/10.1016/j.jconrel.2016.06.017
  4. Binazadeh, M., Xu, M., Zolfaghari, A. and Dehghanpour, H., 2016, Effect of electrostatic interactions on water uptake of gas shales: the interplay of solution ionic strength and electrostatic double layer. Energy & Fuels, 30, 992-1001. https://doi.org/10.1021/acs.energyfuels.5b02990
  5. Bratek-Skicki, A., Sadowska, M., Maciejewska-Pronczuk, J. and Adamczyk, Z., 2021, Nanoparticle and Bioparticle Deposition Kinetics: Quartz Microbalance Measurements. Nanomaterials, 11, 145. https://doi.org/10.3390/nano11010145
  6. Browne, M.A., Galloway, T.S. and Thompson, R.C., 2010, Spatial patterns of plastic debris along estuarine shorelines. Environmental Science & Technology, 44, 3404-3409. https://doi.org/10.1021/es903784e
  7. Chang, X. and Bouchard, D.C., 2013, Multiwalled carbon nanotube deposition on model environmental surfaces. Environmental Science & Technology, 47, 10372-10380. https://doi.org/10.1021/es402200h
  8. Choi, H.M. and Lee, J.Y., 2010, Groundwater level distribution and rainfall response characteristics in Haean basin of Yangu. Journal of Soil and Groundwater Environment, 15, 1-8.
  9. Dong, Z., Zhu, L., Zhang, W., Huang, R., Lv, X., Jing, X., Yang, Z., Wang, J. and Qiu, Y., 2019, Role of surface functionalities of nanoplastics on their transport in seawater-saturated sea sand. Environmental Pollution, 255, 113177. https://doi.org/10.1016/j.envpol.2019.113177
  10. Dylla-Spears, R., Wong, L., Shen, N., Steele, W., Menapace, J., Miller, P., Feit, M. and Suratwala, T., 2017, Adsorption of silica colloids onto like-charged silica surfaces of different roughness. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 520, 85-96.
  11. Elimelech, M., Nagai, M., Ko, C.H. and Ryan, J.N., 2000, Relative insignificance of mineral grain zeta potential to colloid transport in geochemically heterogeneous porous media. Environmental Science & Technology, 34, 2143-2148. https://doi.org/10.1021/es9910309
  12. Fatisson, J., Domingos, R.F., Wilkinson, K.J. and Tufenkji, N., 2009, Deposition of TiO2 nanoparticles onto silica measured using a quartz crystal microbalance with dissipation monitoring. Langmuir, 25, 6062-6069. https://doi.org/10.1021/la804091h
  13. Filipe, V., Hawe, A. and Jiskoot, W., 2010, Critical evaluation of Nanoparticle Tracking Analysis (NTA) by NanoSight for the measurement of nanoparticles and protein aggregates. Pharmaceutical Research, 27, 796-810. https://doi.org/10.1007/s11095-010-0073-2
  14. Gomez-Flores, A., Bradford, S.A., Hwang, G., Choi, S., Tong, M. and Kim, H., 2020, Shape and orientation of bare silica particles influence their deposition under intermediate ionic strength: A study with QCM-D and DLVO theory. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 599, 124921.
  15. Gonzalez-Pleiter, M., Tamayo-Belda, M., Pulido-Reyes, G., Amariei, G., Leganes, F., Rosal, R. and Fernandez-Pinas, F., 2019, Secondary nanoplastics released from a biodegradable microplastic severely impact freshwater environments. Environmental Science: Nano, 6, 1382-1392. https://doi.org/10.1039/c8en01427b
  16. Gunarathna, M.H.J.P., Kumari, M.K.N. and Nirmanee, K.G.S., 2016, Evaluation of interpolation methods for mapping pH of groundwater. International journal of latest technology in engineering, Management & Applied Science, 3, 1-5.
  17. Hou, J., Ci, H., Wang, P., Wang, C., Lv, B., Miao, L. and You, G., 2018, Nanoparticle tracking analysis versus dynamic light scattering: Case study on the effect of Ca2+ and alginate on the aggregation of cerium oxide nanoparticles. Journal of Hazardous Materials, 360, 319-328. https://doi.org/10.1016/j.jhazmat.2018.08.010
  18. Jahnke, A., Arp, H.P.H., Escher, B.I., Gewert, B., Gorokhova, E., Kuhnel, D., Ogonowski, M., Potthoff, A., Rummel, C., Schmitt-Jansen, M., Toorman, E. and MacLeod, M., 2017, Reducing uncertainty and confronting ignorance about the possible impacts of weathering plastic in the marine environment. Environmental Science & Technology Letters, 4, 85-90. https://doi.org/10.1021/acs.estlett.7b00008
  19. James, A. E. and Driskell, J. D., 2013, Monitoring gold nanoparticle conjugation and analysis of biomolecular binding with nanoparticle tracking analysis (NTA) and dynamic light scattering (DLS). Analyst, 138, 1212-1218 https://doi.org/10.1039/c2an36467k
  20. Jang, Y.C., Lee, G., Kwon, Y., Lim, J.H. and Jeong, J.H., 2020, Recycling and management practices of plastic packaging waste towards a circular economy in South Korea. Resources, Conservation and Recycling, 158, 104798. https://doi.org/10.1016/j.resconrec.2020.104798
  21. Kaszuba, M., McKnight, D., Connah, M.T., McNeil-Watson, F.K. and Nobbmann, U., 2008, Measuring sub nanometre sizes using dynamic light scattering. Journal of Nanoparticle Research, 10, 823-829. https://doi.org/10.1007/s11051-007-9317-4
  22. Kaszuba, M., Corbett, J., Watson, F.M. and Jones, A., 2010, High-concentration zeta potential measurements using light-scattering techniques. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering sciences, 368, 4439-4451. https://doi.org/10.1098/rsta.2010.0175
  23. Kestens, V., Bozatzidis, V., De Temmerman, P.J., Ramaye, Y. and Roebben, G., 2017, Validation of a particle tracking analysis method for the size determination of nanoand microparticles. Journal of Nanoparticle Research, 19, 1-16. https://doi.org/10.1007/s11051-016-3643-3
  24. Kim, C., Pennell, K.D. and Fortner, J.D., 2020, Delineating the Relationship between Nanoparticle Attachment Efficiency and Fluid Flow Velocity. Environmental Science & Technology, 54, 13992-13999. https://doi.org/10.1021/acs.est.0c02669
  25. Kim, J., Myeong, H., Son, S. and Kwon, K.D., 2020, Application of Quartz Crystal Microbalance to Understanding the Transport of Microplastics in Soil and Groundwater. Korean Journal of Mineralogy and Petrology, 33, 463-475. https://doi.org/10.22807/KJMP.2020.33.4.463
  26. Lambert, S. and Wagner, M., 2016, Characterisation of nanoplastics during the degradation of polystyrene. Chemosphere, 145, 265-268. https://doi.org/10.1016/j.chemosphere.2015.11.078
  27. Lechner, A., Keckeis, H., Lumesberger-Loisl, F., Zens, B., Krusch, R., Tritthart, M., Glas, M. and Schludermann, E., 2014, The Danube so colourful: a potpourri of plastic litter outnumbers fish larvae in Europe's second largest river. Environmental Pollution, 188, 177-181. https://doi.org/10.1016/j.envpol.2014.02.006
  28. Lima, A.R.A., Costa, M.F. and Barletta, M., 2014, Distribution patterns of microplastics within the plankton of a tropical estuary. Environmental Research, 132, 146-155. https://doi.org/10.1016/j.envres.2014.03.031
  29. Liu, L., Song, J., Zhang, M. and Jiang, W., 2021, Aggregation and Deposition Kinetics of Polystyrene Microplastics and Nanoplastics in Aquatic Environment. Bulletin of Environmental Contamination and Toxicology, 1-7.
  30. Lu, T., Gilfedder, B.S., Peng, H., Niu, G. and Frei, S., 2021, Effects of clay minerals on the transport of nanoplastics through water-saturated porous media. Science of the Total Environment, 796, 148982. https://doi.org/10.1016/j.scitotenv.2021.148982
  31. Medici, G., West, L.J. and Banwart, S.A., 2019, Groundwater flow velocities in a fractured carbonate aquifer-type: implications for contaminant transport. Journal of Contaminant Hydrology, 222, 1-16. https://doi.org/10.1016/j.jconhyd.2019.02.001
  32. Molnar, I.L., Johnson, W.P., Gerhard, J.I., Willson, C.S. and O'carroll, D.M., 2015, Predicting colloid transport through saturated porous media: A critical review. Water Resources Research, 51, 6804-6845. https://doi.org/10.1002/2015WR017318
  33. Nitsche, H., Muller, A., Standifer, E.M., Deinhammer, R.S., Becraft, K., Prussin, T. and Gatti, R.C., 1992, Dependence of actinide solubility and speciation on carbonate concentration and ionic strength in groundwater. Radiochimica Acta, 58, 27-32.
  34. Panno, S.V., Kelly, W.R., Scott, J., Zheng, W., McNeish, R.E., Holm, N., Hoellein, T.J. and Baranski, E.L., 2019, Microplastic contamination in karst groundwater systems. Groundwater, 57, 189-196. https://doi.org/10.1111/gwat.12862
  35. Pecanha, E.R., de Albuquerque, M.D.D.F., Simao, R.A., de Salles Leal Filho, L. and de Mello Monte, M.B., 2019, Interaction forces between colloidal starch and quartz and hematite particles in mineral flotation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 562, 79-85.
  36. Plastics Europe, 2020, Plastics-The Facts 2020: an Analysis of European Plastics Production, Demand and Waste Data
  37. Saleh, N., Kim, H.J., Phenrat, T., Matyjaszewski, K., Tilton, R.D. and Lowry, G.V., 2008, Ionic strength and composition affect the mobility of surface-modified Fe0 nanoparticles in water-saturated sand columns. Environmental Science & Technology, 42, 3349-3355. https://doi.org/10.1021/es071936b
  38. Sanchez, W., Bender, C. and Porcher, J.M., 2014, Wild gudgeons (Gobio gobio) from French rivers are contaminated by microplastics: preliminary study and first evidence. Environmental Research, 128, 98-100. https://doi.org/10.1016/j.envres.2013.11.004
  39. Sauerbrey, G., 1959, The use of quartz crystal oscillators for weighing thin layers and for microweighing applications. Zeitschrift fur Physik, 155, 206-222. https://doi.org/10.1007/BF01337937
  40. Song, J., Wang, Q., Zeng, Y., Liu, Y. and Jiang, W., 2019, Deposition of protein-coated multi-walled carbon nanotubes on oxide surfaces and the retention in a silicon micromodel. Journal of Hazardous Materials, 375, 107-114. https://doi.org/10.1016/j.jhazmat.2019.04.077
  41. Tomaszewska, E., Soliwoda, K., Kadziola, K., Tkacz-Szczesna, B., Celichowski, G., Cichomski, M., Szmaja, W. and Grobelny, J., 2013, Detection limits of DLS and UV-Vis spectroscopy in characterization of polydisperse nanoparticles colloids. Journal of Nanomaterials, 2013, 313081.
  42. Tufenkji, N. and Elimelech, M., 2004, Correlation equation for predicting single-collector efficiency in physicochemical filtration in saturated porous media. Environmental Science & Technology, 38, 529-536. https://doi.org/10.1021/es034049r
  43. Wahl, A., Le Juge, C., Davranche, M., El Hadri, H., Grassl, B., Reynaud, S. and Gigault, J., 2021, Nanoplastic occurrence in a soil amended with plastic debris. Chemosphere, 262, 127784. https://doi.org/10.1016/j.chemosphere.2020.127784
  44. Wallace, S.H., Shaw, S., Morris, K., Small, J.S., Fuller, A.J. and Burke, I.T., 2012, Effect of groundwater pH and ionic strength on strontium sorption in aquifer sediments: Implications for 90Sr mobility at contaminated nuclear sites. Applied Geochemistry, 27, 1482-1491. https://doi.org/10.1016/j.apgeochem.2012.04.007
  45. Walshe, G.E., Pang, L., Flury, M., Close, M. E. and Flintoft, M., 2010, Effects of pH, ionic strength, dissolved organic matter, and flow rate on the co-transport of MS2 bacteriophages with kaolinite in gravel aquifer media. Water Research, 44, 1255-1269. https://doi.org/10.1016/j.watres.2009.11.034
  46. Yao, K.M., Habibian, M.T. and O'Melia, C.R., 1971, Water and waste water filtration. Concepts and applications. Environmental Science & Technology, 5, 1105-1112. https://doi.org/10.1021/es60058a005