DOI QR코드

DOI QR Code

Development of Analytical Method for Microplastics in Seawater

해수에 잔류하는 미세플라스틱의 정성정량 분석법 확립

  • Chae, Doo-Hyun (Department of Life Sciences, Incheon National University) ;
  • Kim, In-Sung (Department of Life Sciences, Incheon National University) ;
  • Song, Young Kyoung (Oil and POPs Research Group, Korea Insitute of Ocean Science and Technology (KIOST)) ;
  • Kim, Sungwoo (Incheon Development Insitute) ;
  • Kim, Seung-Kyu (Department of Marine Science, Incheon National University)
  • Received : 2014.01.02
  • Accepted : 2014.01.27
  • Published : 2014.02.28

Abstract

Despite of emerging and increasing concerns to microplastics, no standard methodology has not been proposed for determination of microplastics. This study aims to develop the analysis method for microplastics in seawater by overviewing methodologies proposed by previous studies and by assessing some processes in those methodologies which possibly cause uncertainties in microplastic determination. Furthermore, we present preliminary results of distribution characteristics of microplastics in seawater of Incheon/Kyeonggi coastal region which is based on our new methodology. Microplastics in surface microlayer (SML) and subsurface water (SSW) were collected using mesh screen and planktonic nets (trawl net with $330{\mu}m$ mesh size and hand net with $20{\mu}m$ mesh size), respectively. Microplastics with < $300{\mu}m$ was predominant, indicating hand net as the better collection tool for SSW. As for SML, FT-IR based microplastic concentration was well matched with naked-eye based concentration which has been used in most of previous studies. However, a poor relationship was observed for SSW, indicating that concentration data of previous SSW studies should be corrected. Incheon/Kyeonggi bay seawater contained the similar concentration range with those in coastal region of the Nakdong River. Our methodology can be used as a basic tool for further microplatic studies.

미세플라스틱의 분포, 거동, 생태계 영향 등은 해양생태계 보전을 위한 중요한 연구관심사가 되고 있다. 그러나 국내외적으로 통일된 조사 및 정성 정량 분석법이 제시되어 있지 않아 자료들의 비교에 한계가 있다. 본 연구는 해수에 잔류하는 미세플라스틱에 대한 국내외 조사방법들을 고찰하고, 불확실성을 증가시킬 수 있는 과정들에 대해 재현성여부를 평가하여 적용가능한 조사 및 정성 정량 분석법을 확립하였다. 또, 확립된 방법을 적용해 인천경기연안 해수에 잔류하는 미세플라스틱의 분포특성에 대한 사전조사 결과를 제시하였다. 해수는 표면해수층(surface microlayer; SML)과 해수층(subsurface water; SSW)로 나누어 SML층은 2 mm mesh screen를 이용해서 채취하였고 SSW층은 동물플랑크톤채집용 trawl net(mesh size=$330{\mu}m$)과 식물플랑크톤채집용 hand net(mesh size=$20{\mu}m$)을 이용해서 채취하였다. 채취된 양에 기초해 계산된 SML층은 대략 $100{\mu}m$로써 SML층을 잘 반영하는 것으로 판단된다. 미세플라스틱의 우점적인 크기는 < $300{\mu}m$으로 관측되어 SSW층에 대한 채취는 trawl-net보다는 hand-net이 더 적절한 것으로 판단된다. 적외선 분광분석(IR)을 통해 플라스틱 여부와 polymer성분을 결정하였는데, SML에 대해서는 IR분석결과에 기초해 계수한 농도와 육안계수법에 기초한 농도가 잘 일치하였으나 SSW에 대해서는 그렇지 못해서 기존 연구들의 육안계수에 의한 결과 값들이 불확실할 수 있음이 관측되었다. 본 연구에서 확립된 방법을 적용해서 사전조사한 결과 인천경기연안 지역 해수 중 잔류하는 미세플라스틱 농도는 낙동강 하구연안에서 관측된 값과 유사한 범위에 있었다. 본 연구에서 확립된 분석방법은 미세플라스틱에 대한 향후 연구를 위해 중요한 기초자료로 활용되리라 사료된다.

Keywords

References

  1. Alaee, M., Arias, P., Sjodin, A. and Berqman, A., 2003, An overview of commercially used brominated flame retardants, their applications, their use patterns in different countries/regions and possible modes of release, Environment International, 29: 683−689. https://doi.org/10.1016/S0160-4120(03)00121-1
  2. Andrady, A.L., 2011, Microplastics in the marine environment, Marine Pollution Bulletin, 62: 1596−1605. https://doi.org/10.1016/j.marpolbul.2011.05.030
  3. Browne, M.A., Dissanayaka, A., Galloway, T.S., Lowe, D.M. and Thompson, R.C., 2008, Ingested microscopic plastic translocates to the circulatory system of the mussel, Mytilus edulis (L)., Environmental Science & Technology, 42(13): 5026−5031. https://doi.org/10.1021/es800249a
  4. Bruker, http://www.bruker.com/, 2013년‚ 12월.
  5. Cunliffen, M., Engel, A., Frka, S., Gasparovic, B., Guitart, C., Murrell, J.C., Salter, M., Stolle, C., Goddard, R.U. and Wurl, O., 2013, Sea surface microlayers: A unified physicochemical and biological perspective of the air-ocean interface, Oceanography, 109: 104-116.
  6. Derraik, J.G.B., 2002, The pollution of the marine environment by plastic debris : a review, Marine Pollution Bulletin, 44: 842−852. https://doi.org/10.1016/S0025-326X(02)00220-5
  7. Engler, R.E., 2012, The complex interaction between marine debris and toxic chemicals in the ocean., Environmental Science & Technology, 46: 12302−12315. https://doi.org/10.1021/es3027105
  8. Hidalgo, R.V., Gutow, L., Thompson, R.C. and Thiel, M., 2012, Microplastics in the marine environment: A review of the methods used for identification and quantification, Environmental science and technology, 46: 3060−3075. https://doi.org/10.1021/es2031505
  9. International pellet watch, http://www.pelletwatch.org/, 2013년‚ 12월.
  10. KHOA, http://www.khoa.go.kr/, 2013년‚ 12월.
  11. KNPS, http://research.knps.or.kr/, 2013년‚ 12월.
  12. Martins, J., and Sobral, P., 2011, Plastic marine debris on the Portuguese coastline: A matter of size?, Marine Pollution Bulletin, 62: 2649−2653. https://doi.org/10.1016/j.marpolbul.2011.09.028
  13. Mato, Y., Isobe, T., Takada, H., Kanehiro, H., Ohtake, C. and Kaminuma, T., 2001, Plastic Resin Pellets as a Transport Medium for Toxic Chemicals in the Marine Environment, Environmental Science & Technology, 35: 318−324. https://doi.org/10.1021/es0010498
  14. Moore, C.J., 2008, Synthetic polymers in the marine environment: A rapidly increasing, long-term threat, Environmental Research, 108: 131−139. https://doi.org/10.1016/j.envres.2008.07.025
  15. Murphy, J., 2001, Additives for plastics handbook, 2nd edition, pp 5- 12, Elsevier, Netherlands.
  16. Piorek, S., 2004, Feasiblity of analysis screening of plastics for heavy metals with portable X-ray fluorescence analyzer with miniature X-ray tube, Global Plastics Environmental Conference.
  17. Teuten, E.L., Rowland, S.J., Galloway, T.S. and Thompson, R.C., 2007, Potential for plastics to transport hydrophobic contaminants, Environmental Science & Technology, 41(22): 7759−7764. https://doi.org/10.1021/es071737s
  18. Wurl, O. and Obbard, J.P., 2004, A review of pollutants in the seasurface microlayer (SML): a unique habitat for marine organisms, Marine pollution bulletin, 48: 1016−1030. https://doi.org/10.1016/j.marpolbul.2004.03.016
  19. Yonkos, L., Friedel, E. and Reyes, P., 2013, Microplastics in waters of the chesapeake bay and coastal Mid-Atlantic, USA, Society of Environmental Toxicology and Chemistry.
  20. 강정훈, 이균우, 권요윤, 심원준, 2012, 거제, 낙동강 해역의 부유 미세플라스틱 분포특성, 한국해양학회 추계학술대회.
  21. 송영경, 허낙원, 장미, 홍상희, 한기명, 심원준, 2012, 거제 동부 해역의 표층 microlayer에서 microplastic의 시공간적 분포특성, 한국해양학회 추계학술대회.
  22. 심원준, 홍상희, 홍선욱, 2012, 해양환경 중의 미세플라스틱 오염: 개요, 해양학회 추계 학술대회.
  23. 정노택, 2009, 해양쓰레기의 전 지구적 관심과 실행, 한국해양환경공학회지, 12(3): 173−180.
  24. 홍상희, 한기명, 허낙원, 장미, 송영경, 심원준, 이종명, 홍선욱, 장용창, 이미정, 2012, 남해안 표착 미세플라스틱 중 유기오염물 질의 잔류농도 및 오염특성, 한국해양학회 추계학술대회.

Cited by

  1. Abundance, size and polymer composition of marine microplastics ≥ 10 μm in the Atlantic Ocean and their modelled vertical distribution vol.100, pp.1, 2015, https://doi.org/10.1016/j.marpolbul.2015.09.027
  2. Distribution of Microplastics in the Mud Flat Near M-city vol.35, pp.5, 2018, https://doi.org/10.9786/kswm.2018.35.5.385
  3. Global Pattern of Microplastics (MPs) in Commercial Food-Grade Salts: Sea Salt as an Indicator of Seawater MP Pollution vol.52, pp.21, 2018, https://doi.org/10.1021/acs.est.8b04180
  4. 해양생물 체내 잔류 미세플라스틱 조사 vol.53, pp.2, 2014, https://doi.org/10.5657/kfas.2020.0244