• Title/Summary/Keyword: 미분방정식

Search Result 693, Processing Time 0.023 seconds

Free Vibrations of Tapered Timoshenko Beam by using 4th Order Ordinary Differential Equation (4계 상미분방정식에 의한 변단면 Timoshenko 보의 자유진동)

  • Lee, Byoung-Koo;Park, Kwang-Kyou;Lee, Tae-Eun
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.25 no.3
    • /
    • pp.185-194
    • /
    • 2012
  • This paper deals with free vibrations of the tapered Timoshenko beam in which both the rotatory inertia and shear deformation are included. The cross section of the tapered beam is chosen as the rectangular cross section whose depth is constant but breadth is varied with the parabolic function. The fourth order ordinary differential equation with respect the vertical deflection governing free vibrations of such beam is derived based on the Timoshenko beam theory. This governing equation is solved for determining the natural frequencies corresponding with their mode shapes. In the numerical examples, three end constraints of the hinged-hinged, hinged-clamped and clamped-clamped ends are considered. The effects of various beam parameters on natural frequencies are extensively discussed. The mode shapes of both the deflections and stress resultants are presented, in which the composing rates due to bending rotation and shear deformation are determined.

Free Vibrations and Buckling Loads of Columns with Multiple Elastic Springs (여러 개의 스프링으로 탄성지지된 기둥의 자유진동 및 좌굴하중)

  • 이병구;이광범;오상진;이태기
    • Journal of KSNVE
    • /
    • v.10 no.6
    • /
    • pp.1067-1074
    • /
    • 2000
  • Numerical methods for calculating both the natural frequencies and buckling loads of columns with the multiple elastic springs are developed. In order to derive the governing equations of such columns, each elastic spring is modeled as a discrete elastic foundation with the finite longitudinal length. By using this model, the differential equations governing both the free vibrations and buckled shapes, respectively, of such columns are derided. These differential equations are solved numerically. The Runge- Kutta method is used to integrate the differential equations, and the determinant search method combined with Regula-Falsi method is used to determine the eingenvalues. namely natural frequencies and buckling loads. In the numerical examples, the clamped-clamped. clamped-hinged, hinged-clamped and hinged-hinged end constraints are considered. Extensive numerical results including the frequency parameters, mode shapes of free vibrations and buckling load parameters are presented in the non-dimensional forms.

  • PDF

Analysis on Strategies for Modeling the Wave Equation with Physics-Informed Neural Networks (물리정보신경망을 이용한 파동방정식 모델링 전략 분석)

  • Sangin Cho;Woochang Choi;Jun Ji;Sukjoon Pyun
    • Geophysics and Geophysical Exploration
    • /
    • v.26 no.3
    • /
    • pp.114-125
    • /
    • 2023
  • The physics-informed neural network (PINN) has been proposed to overcome the limitations of various numerical methods used to solve partial differential equations (PDEs) and the drawbacks of purely data-driven machine learning. The PINN directly applies PDEs to the construction of the loss function, introducing physical constraints to machine learning training. This technique can also be applied to wave equation modeling. However, to solve the wave equation using the PINN, second-order differentiations with respect to input data must be performed during neural network training, and the resulting wavefields contain complex dynamical phenomena, requiring careful strategies. This tutorial elucidates the fundamental concepts of the PINN and discusses considerations for wave equation modeling using the PINN approach. These considerations include spatial coordinate normalization, the selection of activation functions, and strategies for incorporating physics loss. Our experimental results demonstrated that normalizing the spatial coordinates of the training data leads to a more accurate reflection of initial conditions in neural network training for wave equation modeling. Furthermore, the characteristics of various functions were compared to select an appropriate activation function for wavefield prediction using neural networks. These comparisons focused on their differentiation with respect to input data and their convergence properties. Finally, the results of two scenarios for incorporating physics loss into the loss function during neural network training were compared. Through numerical experiments, a curriculum-based learning strategy, applying physics loss after the initial training steps, was more effective than utilizing physics loss from the early training steps. In addition, the effectiveness of the PINN technique was confirmed by comparing these results with those of training without any use of physics loss.

Image Restoration Using Partial Differential Equation (편미분 방정식을 이용한 이미지 복원)

  • Joo, Ki-See
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.12
    • /
    • pp.2271-2282
    • /
    • 2006
  • This paper is concerned with simulation issues arising in the PDE-based image restoration such as the total variation minimization(TVM) and its generalizations. In particular, we study the issues of staircasing and excessive dissipation of TVM-like smoothing operators. A strategy of scaling the algebraic system and a non-convex minimization are considered respectively for anti-staircasing and anti-diffusion. Furthermore, we introduce a variable constraint parameter to better preserve image edges. The resulting algorithm has been numerically verified to be efficient and reliable in denoising. Various numerical results are shown to confirm the claim.

쓰기활동을 적용한 대학수학 미분방정식 수업

  • Lee, Hyun-Young;Jeong, Ye-Won
    • East Asian mathematical journal
    • /
    • v.27 no.2
    • /
    • pp.141-161
    • /
    • 2011
  • This research is a laboratory study for the improvement of differential equation class, and the aim of this study is to propose the possibilities of applicable writing activities for differential equation courses in university. We analyzed how the writing activities can affect the improvement of abilities of the students' affective domain and cognitive domain. Although the results from the two areas did not show a big numerical improvements it proved that the writing activities have positive effects, especially for the group of lower level students. The students felt interested and became more confident with differential equation studies. Their understanding of the study has been increased further by acquiring new learning methods, including writing activities. Therefore, we conclude that teaching and learning method designed systematically to adopt writing activities improve the students' learning attitudes and achievements.

제한조건식을 갖는 연립 4수 경계치 문제의 유한요소내해석

  • 서영태
    • Journal of the KSME
    • /
    • v.26 no.2
    • /
    • pp.114-118
    • /
    • 1986
  • 유한요소법은 경계치(boundary value)문제에 대한 근사해를 구하는 한 방법으로 공학문제 해결의 강력한 도구로서 그 적용분야가 확장되고 있으며, 아울러 유한요소법 자체의 제한점을 축소시 키기 위한 연구가 응용수학자나 공학자에 의해 활발히 진행되고 있다. 본 글에서는 일반적인 유한요소법의 개념을 자연스럽게 확장시켜 공학문제에서 자주 취급되는 제한조건식을 포함한 미분방정식의 처리와 연립미분방정식 및 4계 경계치 문제에 적용시키는 방법을 구체적으로 소 개하고자 한다. 이러한 문제는 최근 에너지 확보와 관련하여 연구가 활발히 진행되고 있는 해 저송유관 설계 및 부설, 시추선 상승관(riser)의 응력해석, 해저광물채집(ocean mining)등의 해 양공학분야에서 크게 대두되고 있다. 해저송유관의 수학적 모델을 통하여 제약조건식을 갖는 연립 4계 경계치 문제를 소개하고 유한요소법의 적용을 설명하고자 한다.

  • PDF

Development of 3-D Field Grid Generating Method for Viscous Flow Calculation around a Practical Hull Form (선체주위의 점성유동 계산을 위한 3차원 공간 격자계 생성방법)

  • Wu-Joan Kim;Do-Hyun Kim;Suak-Ho Van
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.36 no.1
    • /
    • pp.70-81
    • /
    • 1999
  • To predict the viscous boundary layers and wakes around a ship, the CFD techniques are commonly used. For the efficient application of CFD tools to practical hull farms, a 3-D field grid generating system is developed. The present grid generating system utilizes the solution of Poisson equation. Sorenson's method developed for 2-D is extended into 3-D to provide the forcing functions controling grid interval and orthogonality on hull surface, etc. The weighting function scheme is used for the discretization of the Poisson equation and the linear equations are solved by using MSIP salver. The trans-finite interpolation is also employed to assure the smooth transition into boundary surface grids. To rove the applicability, the field grid systems around a container ship and a VLCC with bow and stem bulb are illustrated, and the procedures for generating 3-D field grid system are explained.

  • PDF

Self-Organized Dynamics of Photoinduced Phase Grating formation in Optical Fibers (광 섬유내의 광유도 위상격자가 형성되는 자기조직 역학에 관한 연구)

  • 안성혁
    • Korean Journal of Optics and Photonics
    • /
    • v.4 no.4
    • /
    • pp.464-473
    • /
    • 1993
  • The dynamics of phase grating formation with visible light in an optical fiber is investigated. Adopting a simple two-photon local bleaching model, it is shown that the grating self-organize into an ideal grating, where the writing frequency is always in the center of the local band gap, as it evolves. The evolution at each point in the fiber is described in terms of a universal parameter that reduces the coupled partial differential equations describing the system to ordinary differential equatior~s. These equations are used to prove that there exists a fixed point of the grating growth process that corresponds to a perfectly phase-mached grating.

  • PDF

An efficient parallel solution algorithm on the linear second-order partial differential equations with large sparse matrix being based on the block cyclic reduction technique (Block Cyclic Reduction 기법에 의한 대형 Sparse Matrix 선형 2계편미분방정식의 효율적인 병렬 해 알고리즘)

  • 이병홍;김정선
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.15 no.7
    • /
    • pp.553-564
    • /
    • 1990
  • The co-efficient matrix of linear second-order partial differential equations in the general form is partitioned with (n-1)x(n-1) submartices and is transformed into the block tridiagonal system. Then the cyclic odd-even reduction technique is applied to this system with the large-grain data granularity and the block cyclic reduction algorithm to solve unknown vectors of this system is created. But this block cyclic reduction technique is not suitable for the parallel processing system because of its parallelism chanigng at every computing stages. So a new algorithm for solving linear second-order partical differential equations is presentes by the block cyclic reduction technique which is modified in order to keep its parallelism constant, and to reduce gteatly its execution time. Both of these algoriths are compared and studied.

  • PDF

이상 유동에서의 음파 전달 특성 연구

  • 이성재;김경두;장원표;장근식
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.05a
    • /
    • pp.286-291
    • /
    • 1997
  • 이상 유동에서의 음파 전달 현상을 비평형, 비균질 이상 유동 방정식에 의하여 이론적으로 유도하였다 개발된 방법은 이상 계면에서의 압력 불연속성을 표면 장력 방정식에 의하여 해결하였으며, 이로 인하여 이상 유동 지배 방정식의 불량 설정된 초기치 문제(Ⅰ11-posed initial value problem)가 완전한 쌍곡형 편 미분 방정식군(Complete hyperbolic partial differential equation system)으로 만들어졌다. 새로이 개발된 방정식의 고유값인 음파의 속도는 실험 결과와 정확히 일치한다.

  • PDF