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Free Vibrations and Buckling Loads of Columns
with Multiple Elastic Springs
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ABSTRACT

Numerical methods for calculating both the natural frequencies and buckling loads of columns with the
multiple elastic springs are developed. In order to derive the governing equations of such columns, each
elastic spring is modeled as a discrete elastic foundation with the finite longitudinal length. By using this
model, the differential equations governing both the free vibrations and buckled shapes, respectively, of
such columns are derived. These differential equations are solved numerically. The Runge- Kutta method is
used to integrate the differential equations, and the determinant search method combined with Regula-Falsi
method is used to determine ‘the eingenvalues, namely natural frequencies and buckling loads. In the
numerical examples, the clamped-clamped, clamped-hinged, hinged-clamped and hinged-hinged end
constraints are considered. Extensive numerical results including the frequency parameters, mode shapes of
free vibrations and buckling load parameters are presented in the non-dimensional forms.
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vibrations and buckling loads, of columns which are
subjected to either axial static loads or dynamic loads have
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been investigated by many researchers during the past few
decades. The following references and their citations include
the governing differential equations and significant historical

(98]
, and

literature on this subject. Timoshenko and Gere
Timoshenko, et al? reported the natural frequencies and
buckling loads of the beam-column, respectively. Abbas
and Thomas"” used the finite element method to predict
the dynamic stability of Timoshenko beams on elastic

“ studied the natural frequencies of

foundations, Bokaian
beams under compressive axial loads., Pavlovic and Wyliem
reported the natural frequencies of beams on the non-
homogeneous foundations. Valsangkar and l:’radhanang(6>
reported the natural frequencies of partially supported piles.
Lee and Oh"” reported both the natural frequencies and
buckling loads of the beam-column on elastic foundations.
Lee, et al' studied the free vibrations of tapered piles
partially embedded in elastic foundations, Lee and On®
reported the elastica and buckling load of simple tapered
columns with constant volume,

The columns laterally supported by the multiple elastic
springs are often used to control the free vibrations and to
increase the capability of the axial compressive loads. In
these cases, the problems of both the free vibrations and
buckling loads have to be fully understood since the
column designs are conducted under the comprehensive
understanding the behaviors of such columns, From this
viewpoint, the problems of both the free vibrations and
buckling loads of columns laterally restrained by the
multiple elastic springs are very attractive in the structural
engineering fields.

The main purpose of the present paper is to compute
both the natural frequencies and buckling loads of columns
with the multiple elastic springs, In free vibration analysis,
the effect of axial load is included. In this study, each
elastic spring of the column is modeled as a discrete elastic
foundation whose longitudinal length is very short. On the
basis of this model, the differential equation governing the
free vibrations of columns with the elastic springs is
derived. Also the differential

buckled shape of such columns

equation governing the
is derived using the
differential equation of free vibration and the relationship
between the natural frequencies and axial compressive
loads. These differential equations are solved numerically
with  the

corresponding mode shapes and the buckling loads of such

for calculating the natural frequencies
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columns, In the numerical examples, four end constraints of
clamped-hinged, hinged-clamped and
hinged-hinged ends are considered. The effects of various

clamped-clamped,

non-dimensional system parameters on the natural
frequencies and the buckling loads are reported in tables
and figures. Also the typical mode shapes of free vibrations

are reported.

2. Mathematical model

Fig. 1 shows the typical mode shape of uniform column
with span length /. which is laterally restrained by the
multiple elastic springs. Both ends are supported by either
clamped or hinged end. Each spring constant and its
S; and Lj,
respectively. Here the subscript j is the spring number of

distance from the left end are depicted as

the intermediate multiple elastic springs so that the
is the total

column is subjected to an

number of springs. Also the
in which the
compressive load is positive. As shown in this figure, the

subscript n
axial load P
rectangular coordinates (x, w) are depicted for defining
the dynamic vertical displacement W= W(x, t), in which
w is the amplitude of W.

clamped/hinged

clamped/hinged

i L
< - »
< ! >

Fig. 1 Typical vibration mode shape of column with
elastic springs

H
Li L <> H2
S _ H ,‘.,7,

Fig. 2 Column supported by (a) elastic spring and (b)
elastic foundation with finite length
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In this study, each spring depicted in Fig. 2(a) is
modeled as the whose
longitudinal length is very short as shown in Fig. 2(b).
The foundation modulus and its finite length are depicted
as K; and H, respectively. Also the dynamic vertical

discrete elastic  foundation

displacement of column is expressed as W as shown
already in Fig. 1.

Now the partial differential equation(2J governing the free
vibration of column on the elastic foundation is introduced
as follows, in order to apply the column with elastic
springs to the column on the discrete elastic foundation.
*W
ox*

2
+m aatVZV +P

9w
4

+KW=0 (1
o0x

El

where EI, m and t are the flexural rigidity, mass per
unit column length and time, respectively. ‘
The column is assumed to be in harmonic motion

W=W(x,t)=wsin(wt) (2)

where w; is the ith angular frequency.

In Fig. 2, the internal force of jth spring and the
restoring force of jth foundation due to the dynamic
displacement W at L; are S;w and
vely. Since each spring is modeled as the discrete
foundation with the finite longitudinal length H. the

spring force and the restoring force of foundation are equal

K;Hw, respecti-

to each other. When the former is equivalent to the latter,
it gives the following Eq. (3).

SjWZK]‘HW (3)

Rewriting the Eq. (3) gives

K,-=Sj/H=aS,-/l (4)
in which a is the ratio of span length / to finite
foundation length H, defined as

a=I{/H (5)

Substituting Eq. (4) into Eq. (1) gives the following
equation,

‘W o'W o'W S
EI aX4 +m atz +P axz +a l

S;=0 not for L, —H/2<x<L; +H/2

LW =0,
(6)

It is noted that in Eq. (6), the spring constant S; not

for Ly —H/2<x<L; +H/2 is zero since the column is
restrained by elastic foundations with length H for only
L;~H/2<x<L; +H/2 as shown in Fig. 2(b).

To facilitate the numerical studies and to obtain the

most general results for this class of problems, the

following non-dimensional system variables are defined. The
first is the frequency parameter,

¢ = w; I* (m/E])? (N

which is written in terms of ith angular frequency w;,

i=1,2,3,>. The load parameter is
p=P I*/(z°ED) (8)
The spring parameter is
s;=S;*/EI, i=1,2,3,+,n (9)

The coordinates x and w are normalized by the span

length /, or

E=x/1
7=w/l

Also, the position parameter of each spring is defined as

A]‘:Lj/l, j“—‘l,2,3,“-,n (12)

When each term of 98°W/dx?, 9'W/ox* and 9°W /ot?
obtained by differentiating the Eq. (2) is substituted into
Eq. (6) and the non-dimensional forms defined in Eq. (5)
and Eqgs. (7)~(12) are used. then the result is

4 2 )
%:—nng—sg-+(cf—asj)7y, .
s;=0 not for A;— 1/(2a)<&<A;+ 1/(20) k

which is the
governing the

differential
column

non-dimensional equation

free vibration of with  the
intermediate multiple elastic springs.

Now consider the buckling load problems. The axial
compressive loads of the columns are increased gradually
and then the natural frequencies are decreased. When the
compressive load finally coincides with the buckling load,
the column is buckled and the respective angular frequency
becomes zero. Thus, substituting c¢;=0 and p=b; into
Eq. (13) gives the following equation which governs the
buckled shape of column with the intermediate multiple

elastic springs.
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—n'zb 7,
df“ dfz o (14)
s;=0 not for A;— 1/(2a)<&<A;+ 1/(2a)
where b; is the buckling load parameter defined as
b =B, I*/(ZED), i=1,2,3, (15)

in which B, i=1,2, 3,++- is the ith buckling load.
The boundary conditions for hinged end ( x=0 or

x=1/) are
7=0 at £=0 or 1 (16)
d2
déz =0 at £=0 or | (17)

which assure that the vertical displacement and bending
moment are zero at the hinged end, respectively.

The boundary conditions for clamped end ( x=0 or
x=1) are

7)=0 at £=0 or 1 (18)

=0 at £&=0 or 1 (19)

E

which imply that the vertical displacement and rotation are
zero at the clamped end, respectively.

3. Numerical methods

Based on the above analysis, the algorithms were
developed to calculate both the natural frequencies with
the corresponding mode shapes and the buckling loads of
the columns. The algorithms similar to those described by
Lee and Oh'”, Lee, ef al'” and Oh, et al""” were used to
solve the differential equations (13) and (14). The Runge-
Kutta method™ and the determinant search method™?
combined with Regula-Falsi method"”
and to determine the

were used to
integrate differential equations

eigenvalues, namely the frequency parameter c¢; or the

buckling load parameter b;, respectively. For the sake of

completeness, these algorithms are summarized as follows.
The first is for the free vibration probiems.

(1) Specify the column geometry (end constraint, load
parameter p, and each position parameter A; and spring
parameter s;).

(2) Consider the fourth order system, Eq. (13), as two

1070/ =22 s35s|X|/A 108 Al 635, 20002

initial value problems whose initial wvalue the

homogeneous boundary conditions at &=0 in accordance
(1). Then
namely an

are

with the end constraint as chosen in step
assume a firial frequency parameter ¢,
eigenvalue, in which the first trial value is zero,

(3) Using the Runge-Kutta method, integrate the Eq.
(13) from &=0 to 1. Perform two separate integrations,
one for each of two chosen boundary conditions.

(4) From the Runge-Kutta solutions, evaluate at £=1
the determinant D of the coefficient matrix for the
chosen set of two homogeneous boundary conditions, If
D=0, then the trial
D=0, then increment

(5) Repeat steps (3) and (4) and note the sign of D
iteration. If D
consecutive trials, then

value of ¢; is an eigenvalue. If
c; and go to step (3).
in each changes sign between two
the eigenvalue lies between these
last two trial values of c;.

(6) Use Regula-Falsi
trial c; based on its two previous values.

method to compute the advanced

(7) Terminate calculations and print the value of c;

and the corresponding mode shape #7=7(&) when the
appropriate convergence criteria are met,

The second is for the buckling load problems, Also, the
were calculated in a

buckling load parameters b;

straightforward way described in free vibration problems.
Specify the column geometry, of course not p in step (1),
And assume the trial value b; instead of c¢; in step (2).
Remaining numerical procedures are the same as the above
procedures, and of course the characteristic value of Eq.
(14) is the buckling load parameter b;.

Based on these algorithms, two FORTRAN computer
programs were written to solve the frequency parameters
c; and the buckling load parameters b, respectively. In

these FORTRAN codes, the clamped-clamped, clamped-

hinged. hinged-clamped and hinged-hinged ends are
considered as the end constraints of columns.
4. Numerical results and discussions
Before discussing the numerical examples, the

convergence analysis was firstly conducted, in which the
suitable convergence of solutions was obtained for the value
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of a=100. The convergence criterion was that both the
c; and b; solufions obtained with a more crude value of

a=20 agreed with those obtained with a=100 to
within three significant figures, The numerical results are
now discussed.

The first series of numerical
validations of the analysis for both the free vibrations and
buckling loads presented herein. For comparison purposes,
finite element solutions based on the SAP 90 were used to
compute the first four frequency parameters c¢; and the

results are compared in Table 1. In this study, the end
constraints of hinged and clamped ends are depicted as 'h’
and ¢, respectively. For example, 'h-c’ means the end
constraint of hinged-clamped ends.

Also comparisons are made between the first four

studies are served as

buckling parameters b; computed using the present
analysis and those given by Timoshenko and Gere(l) in

Table 2. These two Tables show that both the natural

Table 1 Comparison of frequency parameters

method SAP 90 for p=0

frequencies and buckling loads predicted herein agree
closely with those of the references.

100

80

60

40

20
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0 100 200 300 400 500
SI

Fig. 3 c¢; versus s; curves

¢; between this study and finite element

&, s; End constraint Data source Frequency parameter, c;
i=1 i=2 i=3 i=4
h-h This study 140 39.5 89.4 158,
£,=0.5 SAP 90 40 395 89.3 158,
s =50. e This study | 250 617 121. 200.
SAP 90 250 67 121, 200.
£=0.2 - This study | 190 531 106. 178,
1 =50. SAP 90 190 531 105. 178,
£=0.7 W This study | 206 520 105. 179,
52= 100, ‘ SAP® | 26 519 15 I

Table 2 Comparison of buckling load parameters

reference(1) for

b; between this study and

n=1 and hinged-hinged ends.

Buckling load parameter, b,
&, 8, Data source
i=1 1=2 i=3 i=4
£=0.5 This study 2.008 4.000 9.130 16,00
s;=50. reference (1) 2.008 4,000 9130 16.00
=04 This study 2.615 4.368 9.106 16.14
s;=100. reference (1) 2.613 4370 9,104 16.14
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The of
parameters on c¢; and b; are shown in Fig. 3 through

effects various non-dimensional  system

10. First, the free vibration problems are illustrated. Curves
A1=0.4 and p=0

are given in Fig, 3, in which two lowest values of ¢; are

of the ¢; versus s; with n=1,

presented, The trend is expected: the ¢; values increase
as s, increases, and as the end constraint increases from
hinged-hinged to hinged-clamped to clamped-hinged to
clamped-clamped, each value of ¢; increases. However, it

is true that the fact is reversed in case of the first mode,
between the hinged-clamped and clamped-hinged ends.
The curves of the ¢;(i=12) versus 4, with n=1,
s;=50 for p=0 are shown in Fig. 4. It is noted that
i=1, the of hinged-hinged
clamped-clamped ends become maximum at A,=0.5,

value for hinged-clamped case

for c, values and
respectively: and the ¢,
become maximum at A, =0.42 where the spring’s
position is located eccentrically to the hinged end. Also, the
curves of c¢; of hinged-clamped and clamped-hinged ends
are symmetric with each other about A,=0.5. For i=2,
the

ends for

¢y values of hinged-hinged and clamped-clamped
A1=0.5 are equal to those of columns without

the elastic springs.
Shown in Fig. 5 are the variation of first frequency

parameter c¢; with the number of springs n equally
spaced for p=0. The c¢; values increase as the number
100
: n=1, s =50, p=0
j : C-l(’l1
804 T e
{4 ------ : h-h
] i=2
60 jm
o‘ '_‘__._._-- ——T e e T ™ e
40 oo m e
E
1 i=1
0 T _ .
o == ————:—"‘—““—:-T_:j-_——
0 |||||l||l|1*1'll[|1|||llrv
0.0 0.2 04 0.6 0.8 1.0
Ay

Fig. 4 ¢; versus A; curves
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Fig. 5 Variation of <¢; with the number of elastic

springs equally spaced

hinged-hinged ends, p=0
: n=1, A,=0.4, 5,50 (¢,=13.58, ¢,=39.95)
: without spring (¢,=9.87, ¢,=39.48)

1st mode

¢=0 ¢=1

=

Fig. 6 Example of mode shapes for hinged-hinged
ends

of springs increases, as it is expected. It is noted that the
¢; values of clamped-hinged and hinged-clamped ends
are equal to each other since the elastic springs are equally
spaced in accordance with the number of springs.

Shown in Fig, 6 are the first and second mode shapes of
hinged-hinged ends. In this figure, the solid and dashed
curves are the mode shapes with elastic spring for
Ai=0.4, s;=50 and
respectively, This that
amplitudes of first mode are accorded at

n=1,
without spring,
the maximum
£=0.5 for the
column without the spring, and at 053 with the spring,
¢;=9.87 and 13.58 for

these respective columns, it is found that the values of c¢;

and p=0,

figure shows

respectively. Also comparing

are increased when the column is restrained by its elastic
springs. In case of second modes, it is shown that also two
mode shapes are much different from each other.

Fig. 7 shows the effects of axial loads on the natural
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50
1 n=2, A,=0.33, 5,=50, A,=0.67, 5,=100
7 FT b,
40 —1
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Fig. 7 c; versus p curves
10
1 n=1,1=04
1 700 exact solutions for h-h
8 ]
: c-C
6 — h-c
b, ]
‘]
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0 100 200 300 400 500
Sl
Fig. 8 b, versus s; curves
frequencies, in which only the first frequencies are

presented. See the column geometry in this figure. The
values of c¢; decrease as the axial compressive load
increases, and the ¢, values increase as the tensile axial
load increases. It is noted that the values of p on the
horizontal p axis, marked by [, are the first buckling load
parameters b; corresponding to each end constraints for a
given set of column geometry.

Second, the buckling loads problems are illustrated. Fig. 8
shows the curves of by A=04.
Marked [1 are the exact sclutions by Timoshenko and
Gere'"

versus s; for

which serve to validate the present theory. The

values of b; increase as the spring parameter s,

increases,

The curves of the b, versus A, with s;=50 are
shown in Fig. 9. Also, marked [] are the exact solutions
given by Timoshenko and Gere”. The trend
expected as shown in the Fig. 4 in free vibration problems.

It is noted that the b,

clamped-clamped ends become maximum at

Is as

values of hinged-hinged and
A1=0.5.
respectively, and the b, value of the hinged-clamped end
A=0.39

position is placed eccentrically to the hinged end.

become maximum at where the spring’s

6
1 n=1,s=50
1 o exact solutions for h-h
5 -
] c-C
47
o3 B h-c c-h
2
1+
0 T T T I T T T I T T T ] T T T I T T T
0.0 0.2 0.4 0.6 0.8 1.0

Ay

Fig. 9 b, versus A; curves
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Fig. 10 Variation of b; with number of elastic springs
equally spaced
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Fig. 10 shows the variation of the first buckling load
parameters b, with the number of elastic springs equally

spaced. The b, values increase as the number of springs

increases, which is expected.

5. Concluding remarks

The numerical methods developed herein for calculating
the approximate natural frequencies and buckling loads of
the columns with the multiple elastic springs are found to
be efficient, accurate and highly versatile. These methods
are practically versatile since the natural frequencies can be
calculated considering the effects of axial loads and the
multiple elastic springs restraining the column laterally,
taken separately or in combination. Also the buckling loads
can be calculated accurately for such columns,
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