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The dynamics of phase grating formation with visible light in an optical fiber is investigated. Adopting
a simple two-photon local bleaching model, it is shown that the grating self-organize into an ideal
grating, where the writing frequency is always in the center of the local band gap, as it evolves.
The evolution at each point in the fiber is described in terms of a universal parameter that reduces
the coupled partial differential equations describing the system to ordinary differential equations. These
equations are used to prove that there exists a fixed point of the grating growth process that correspo-

nds to a perfectly phase-mached grating.

1. Introduction

For over a decade now it has been known that if
the light of an Argon ion-laser is launched into germa-
nosilicate optical fibers the initially high transmission
drops on the time scale of seconds or minutes to very
low values.') Early investigations showed that somie-
how a grating is grown in the refractive index of the
glass of the fiber, phase-matched for Bragg scattering
so that the light is ultimately prevented from propaga-
ting through the fiber.[12! A typical experimental run'®
of the growth of such a grating is shown in Fig. 1,
exhibiting the oscillations in the transmission and ref-
lection that typically accompany the general decrease
in the former and rise in the latter.

A full study of this phenomenon must address two
questions: First, what is the microscopic mechanism
which leads to the modification of the refractive index
in the fiber? Second, how does one characterize the
nonlinear dynamical process which describes the gro-
wth of the grating?™® In this paper, we shall attempt
to address only the second of these questions. To do
so, we require at least an approximate, phenomenolo-
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gical descreption of how the dielectric constant changes
the fiber, in the typical experimental geometry illustra-
ted in Fig. 2.

Though the precise microscopic mechanism which
leads to these grating remains unclear, it is generally
accepted that a two-photon interaction of the 488 nm
laser light with an absorptive impurity band in the
glass centered about 245 nm is responsible.58! We
present here a description based on a local two-photon
bleaching model,”" first suggested by Meltz et all”? In
this model one assumes that, through the Kramers-
Kronig relations, the photosensitivity originates from
a bleaching of the impurity band. The justification of
such models has been discussed more thoroughly in
a previous study,**) and the reader is referred to
this work for a more detailed description. In the pre-
sent paper we just use the result that the Jocal change
in dielecric function &z, #) is related to the local inten-
sity I(z ¢) through a two-photon process, viz. Jez &)
/ot P, t), and explore its consequences.

II. Basic equations

In this section we first discuss how a given grating
at time ¢ affects the propagation of light through the
fiber. We neglect effects specifically related to the fiber
mode profiles, and assume that the only relevant spa-
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Fig. 1. Experimental results shown in Ref. 3. The solid
and dashed lines show the transmitted and ref-
lected powers, respectively, as time increases.
The gradual damping of the oscillation is due
to the fiber heating.

tial coordinate of the system is that of the fiber axis,
z. In the pristine fiber light propagates with a wave
number k= (w/c)\/& where o is the incident light fre-
quency and ¢ is the initial uniform effective dielectric
constant. At a later time, the effective dielectric cons-
tant can be written as

gz D=¢t+Aek 1), (1)

where Ag(z, t) is the photo-induced modification. Retai-
ning grating terms of spatial frequencies * 2k, which
may give Bragg matched reflection, we can write Ae
generally as

Aez, H=&k Dt+ealk Df*+eg'@ te **
=&l H+2lei Dlcoskz+ ¢z 1), )

where &(z f) is the modification to the background
index and |&f(z #)| and ¢z ) are the amplitude and
phase of a grating, respectively. We assume that no
linear absorption is induced and thus that A&z, £), &z
t), and ¢z f) are real.

We write the electric field inside the fiber as

E@ D=e(@ De ™+cc, 3)

with

Da— V) | «<—
U(z.b) —_—

n, n, n,
z =0 (back) z =L (front)

Fig. 2. Schematic of the geometry we consider. The
indices of refraction are given by #, for z2<0,
ny for 0<z<L, and #n; for z>L. Note that the
light enters from the right-hand side.

el@ H=Ul De*+Ve te ™, @

where Uz, t) and V(z t) are the complex amplitudes
of the right and left traveling waves respectively (see
Fig. 2). Since the photoinduced gratings change on time
scales typically much longer than the fiber round trip
time L/c, where L is the length of the fiber, at any
time ¢ we can take e(z, ¢) to be a solution of the wave
equation describing stationary fields,

2
[8%2 —% s D] e n=0. ®)
Initially, before any photoinduced change in &z #), U
and V are of course uniform. For the weak gratings
that are typically induced, we assume that the scatte-
ring of light from the right to the left, and vice versa,
can be described by fields Uz, #) and V{(z t) that are
slowly varying in space on the time scale of the wave-
length 2n/k. Using Eq.(4) in Eq.(5) and adopting the
slowly varying envelope approximation, we find the
coupled mode equations

4 ik
U D _ k(e nUG Dree HVG ]
oz 2¢€
ke
e D _ e oVe b erte DUG D)
oz 2e

To solve Eqgs.(6) and determine the electric field th-
roughout the fiber at any given time ¢, we must specify
the physically appropriate boundary conditions. If we
choose the geometry of the system as shown in Fig.
2, where for convenience the light is taken to be co-
ming from the right, then the boundary conditions at
the back (z=0) and front (z=L) ends of the fiber are
given by
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U©, H=raV(Q, ), )
and
1
en= o [V, He ™ —rgUd, He*], (8)
£

where ¢, is the input field at z=L"*, which is assumed
to be constant for >0, and r; and f; are the effective
reflection and transmission coefficients at the corres-
ponding interfaces. If a plane wave model is used to
describe the reflection and transmission at the interfa-
ces, then the 7; and ¢; are given by the well-known
Fresnel coefficients

ni—n;
ri=——
ni+n;
27[,‘
ti= , &)
’ nit+n;

where the effective indices of refraction are given by
ny for 2<0, ny(=1/8) for 0<z<L, and n; for z>L. Note
that we have assumed Ae<g so effective index of
only the unexposed fiber appears in Eqgs.(9).

Eqgs.(6-9) describe how a given grating influences
the fields at any instant in time. Next we discuss how
the field modify the grating at each position of the
fiber. Although the microscopic origin of the grating
formation is not yet clear, experimental evidence indi-
cates that at least the initial grating growth can be
described by a time rate of change of Ag proportional
to the square of the intensity.®) A model in which,
say, two-photon absorption leads to a change in the
properties of defect sites with linear absorption bands
in the ultraviolet® perhaps shifting those bands,
would through the Kramers-Kronig relation lead to a
change in the (essentially real) dielectric constant at
optical frequencies consistent with the observed initial
grating rate of change. In its simplest form, this model
yields a dynamical equation for the photoinduced cha-
nge Az t) of the form™

9

—A72
gy Agz, H=AI*G¢ 1), (10)

where A is a real constant and saturation effects asso-
ciated with depletion of the original defect sites are
neglected; the local intensity is proportional to

Iz H=le@ HI%. (11)

For most of this paper we will adopt Eq.(10), someti-
mes called the local two-photon bleaching model, and
explore its consequences. We mention that, even if Eq.
(10) is accepted as the model for the permanent change
in the dielecric constant, transient phenomena such
as fiber heating can quantitatively affect the dynamics
of gratng growth® Such effects, which do not seem
to modify the essential qualitative dynamics of grating
formation, we neglect here.

Substituting Eqgs.(2) and (4) into Eq.(10) and neglec-
ting the non-phase matched terms involving ¢** and

e “* we have
928 D_ptave i+ 1ve o
+2|UG, tPIVE t)I%]
228 D _onut i+1Ve DG OVG 1
a2
which are subject to the initial conditions
&z 0)=gl 0)=0. 13)

Equations (12) and the initial conditions (13), combined
with Eqs.(6) and the boundary conditions given by Egs.
(7) and (8), define the nonlinear dynamics of the sys-
tem. We note the Ul ) and V(z t) change &z ¢)
and &(z 1) locally, but that modifications of the dielect-
ric constant change Ulz ) and V(z ) globally. As a
result, the dynamics of the electric field and grating
are so intricately connected that it is difficult to sepa-
rate one from the other. In the section 5, however,
we show that in homogeneous models of the form of
Eq.(10) there exists a wuniversal evolution parameter
which makes it possible to essentially decouple the
local and non-local aspects of the dynamics of the sys-
tem. Using this parameter we are able to transform
the coupled partial differential equations into coupled
ordinary differential equations, which of course vastly
simplify the problem.

III. Numerical Calculations

We use a fourth-order Runge-Kutta method to solve
numerically the coupled partial differential equations
defined in Sec. 2. In Fig. 3 we plot the transmission
of the light through the fiber as a function of time.
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Fig. 3. Transmissivity as a function of time (arbitrary
units) in a numerical simulation for a fiber of
30 cm length, and (n;, n; n)=(1, 1.5, 1).

It shows that the transmission is decreasing in time
with the oscillations, showing good agreement with the
experimental observations (see, Fig. 1).

In Fig. 4(a) we plot the transmission versus time
when we assume no Fresnel reflection at the front
end of the fiber initially (i.e., we set r;3=0 at ¢=0).
The boundary condition at the front end of the fiber
(i.e., Eq. 8) does not contribute to the transmission
in this case, and as a result we see that the osillatory
behavior shown in Fig. 3 does not appear and the tran-
smission drops monotonically. On the other hand, in
Fig. 4(b) we plot the transmission versus time when
we use the same boundary conditions as in the case
of Fig. 3 initially, but at t=20 we set »;;=0 (ie, the
Fresnel reflection at the far end of the fiber is remo-
ved at this time). We see that the grating appears to
stop growing and the transmission shows only the ox-
cillatory behavior in time. Therefore we qualitatively
conclude that the overall decrease of the transmission
in Fig. 3 is due to the Fresnel reflection at the far
end, and the oscillations are due to the interference
between the light reflected directly from the front end
surface and that reflected from the grating which is
only moving.

In Figs. 5(a)-(c) we plot &, !&l, and the phase of
&, as a function of position z at t=100. They all show
monotonically increasing functions of z. From Fig. 5(c)
we see that grating is highly chirped, and the grating
phase ¢ is fixed at far end of the fiber z=0, which
comes from the initial condition (13).
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Fig. 4. (a) Transmissivity as a function of time when
r3=0 at £=0. (b) Transmissivity as a function
of time when 7r;»=0 at ¢=20.

In Fig. 6 we plot the frequency response of the gra-
ting which was written by the light of frequency .
We stop growing the grating at =100 and put a probe
beam of frequency w into the front surface of the fiber
to study the reflectivity as a function of frequency.
We see that the band width of the spectrum is order
of 100 MHz. The narrow response of the grating also
implies that it is almost perfectly phase matched to
the writing radiation. In Fig. 7 we plot the frequency
response of a uniform grating, when its maximum re-
fectivity is equal to that of Fig. 6, and comparing it
with Fig. 6 we indeed notice that the grating of Fig.
6 is perfectly phase matched.

IV. The gap parameter

Before we try to solve the coupled mode equations
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Fig. 5. Plots of (a) &, (b) lel, and (c) ¢ as a fuction
of position z at ¢=100.

analytically, it turns out to be useful o rewrite these
equations in a more concise formalism. To do this,
we first write the coupled mode equations (6) as

ove 1 =io(z, Nz H+ix(z DECIVE 1)
z
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Fig. 6. Reflectivity as a function of wavelength for the
grating of Figd at t=100.
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Fig. 7. Reflectivity as a function of wavelength for a
uniform grating when its maximum reflectivity
is equal to that of Fig. 7.

Ve, b _
oz

where the grating fields o(z, ) and «(z, ¢) are defined
by

—io, OV H—idz e * UG 114)

ol D= & 1)
2
k

Kz H=—= la@E Hl. (15)
2¢

We next transform Uz, ¢) and V(z, £) to the field ampli-
tudes u(z £ and v(z t) in the grating frame such
that

UG H=ulz t)e%""?
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Fig. 8. Plot of n versus k given by Eq.(20)

Vi, H=v( De ¥ (16)

Then substituting Eqs.(16) into Eqgs.(14), defining the
effective length y at each time

y=| v, ez, an
0
and introducing the gap parameter n,
1 1 doG t)
= , ) — ———— 18
"m,t)[o&)z dz] a8

we can finally rewrite the coupled mode equations
as

% =iqu+iv
Z; = —im—in. 19)

We notice that the variable z does not appear in Egs.
(19), and intead y plays the role of an effective spatial
coordinate. Moreover all the grating fields (ie, o, x
and ¢) are combined in a new field 7, and we thus
only need to analyze the effect of any grating field
on n to understand its role in the coupled mode equa-
tions.

To see the qualitative behavior of the fields » and
v as a function of 7, we consider the special case of
uniform 7. Then we easily find that # and » are given

by the linear combinations of ¢® and e™®, where £
is given by

k=t/F—1. (20)

From Eq.(20) we see that if |5|>1, the fields are desc-
ribed by sinusoidal functions, and thus forward and
backward waves propagate with amplitudes determined
by the boundary conditions. In fact, as |7l—>, the
coupled mode equations become totally decoupled, and
u and v propagate independently (see Fig. 8). On the
other hand if |nl<1 (defining the stop gap), u and v
are described by hyperbolic functions which are non
propagating (the edges of stop gap are defined by n
== 1). Moreover, in the middle of the stop gap (i.e.,
Inl—0) we exactly satisfy the Bragg condition. There-
fore in order to get the strongly Bragg-matched reflec-
ted light we expect that n must be in the region of
the stop gap.

V. Reduction of the dynamics

The solution of the set of coupled partial differential
equations (6, 12) is facilitated by the introduction of
new variables to define the state of the electromagnetic
field. We put

s1=2Re[v*(z, Hulz, t)]
se=2Im[v*@z, Dulz £)]
s3=lvlz DIP—lulz HI?
so=lvGg HI*+lu HI% 21

Note that these are not all independent, but they sati-
sfy the relation

se=st+si+s]. (22)

If 51, 52 and s3 are specified at a given (z ), then u(z,
#) and v(z f) may be determined except for an overall
phase factor. We begin by writing the coupled mode
equations (6) in terms of s-variables:

s
oy
031
— =-—2ns
dy 752
Js
7; =2ns,+2s,
983

oy

:282

=0. (23
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The two-photon equations (12) can be rewritten

as
do 1
E :S(Z)-I-E(Sf-!-sg)
dx
o o
Kip =S50Sz, (24)

ot

where the coefficient A in Eqs.(12) is absorbed in time
variable t. The initial conditions (13) become

oz 0)=xz, 0)=¢k 0)=0, (25)

where the initial condition on ¢ is chosen for later
convenience. To complete the rewriting of our dynami-
cal equations (6-8, 12-13) in terms of these new variab-
les, we must consider the boundary conditions (7-8).
Equation (7) is easily written as a condition on ratios
of the s-parameters,

510, £)/s3(0, 8)=2rn/(1—75)
5200, £)/s5(0, H)=0
5000, D550, Hy=A+7rIN1—73), ©26)

where the third follows from the first two and Eq.(22).
The boundary condition (8) may also be written in te-
rms of our new variables, but it is more complicated;
we defer its expression to later in this section.

The last of Eqs.(23) expresses the fact that the ene-
rgy flux through the fiber is independent of position;
from it we may write

s3=s3(?). @7

This holds because we neglect any effect of absorption
on the light propagation. Such absorption, though ulti-
mately responsible for the change in the dielectric con-
stant that leads to grating formation, is very weak, and
its neglect on light propagation, implicit in the form
of our coupled mode equations (6) and the parameters
in those equations, is well justified.

Since s; does not depend on the variable z, we are
led to simplify our equations by dividing both sides
of Eqs.(23) by s; to obtain

B
ay

s _
o5 = —2n5,

dy

52 .

— =215,+25

ay ns 0, (28)
where the s-bariables are defined as

- So - S1 - S2
So="—, 1T, 2= . (29)
S3 S3 S3

We can also write Egs.(24) in terms of the s-variab-

les
do _, 1 -
E =Sg+5 S?+S§
s
é’r 01
22 5., 30)
Jrt

where a new time variable t is defined as
t
e =[ e @1)
0

We now seek a solution of our equations involving
an evolution of the grating fields of the form

o=1t0(12)
Kk=1kK (z2)

¢=0 (2), (32)

which satisfies the initial conditions (25) as long as
¢(0)=0. For this assumed form for the grating fields,
y and n in Eqs.(17) and (18) can be written respectively

as
y=[ " =00
_ 1 do
- Lo
n= TZ n(), (33

where the wuniversal evolution parameter x is defined
by

r=rt2 (34)

That is, if the grating fields do evolve according to
the form Eq.(32), then the evolution of ¥y and 7 at any
point in the fiber is similar to the evolution of those
quantities at every other point in the fiber. In particu-
lar, the grating parameter 1 goes through the same
evolution history at each point in the fiber, points at
the input end of the fiber (large 2z) simply running
through this history at a faster rate than points near
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the far end of the fiber (small 2).

Since ¥y and 7 depend explicitely only on x for the
proposed solution (32), from Eqs. (28) we are led to
seek s-variable evolution which also depend only on

x, le.,
50=Sox), S1=51(x), S2=$:0x). (35)
Then, using the assumed forms (32, 35), we find
ds _
s;ix) =2k(x)s2{x)
di—;x(x) = — 2k() 1) 5:60)
—”%”—)— = — 2R(0) () $2x) + 2K(8) o) 36)

are required to satisfy Egs.(28), and
)=~ [ [EZ(x'>+i(§2<x')+§ o Jar
xJo 0 2 1 2
_ 1 =_ _
Bo==[ 55 @ @7
£J0

and

ddlx) _1 So(x)s2 (%)
& x K@)

are required to satisfy Egs.(30). The boundary condi-

tion (26) becomes an initial condition to which Eqs.(36-

(38)

38) are subject,

2rn

51(0)= W

, 52(0)=0. (39)
So we see that gratings of the form (32), and electric
fields of the form specified implicitly by (35), do indeed
describe a solution of the coupled partial differential
equations (6, 12), which are subject to the boundary
conditions (7), as long as Eqs.(36-37) are satisfied, sub-
ject to the initial condition (39) and the relations (33,
38). The problem of solving the coupled partial differe-
ntial equations has been replaced by the problem of
solving the two ordinary, integro-differential equations
(36-37). It is clear from this reduction that the gap
parameter n and s-variables at each point in the fiber,
except z=0, evolve in exactly the same way when
measured by the universal parameter x. With respect
to actual time, of course, the points at the front end

of the fiber evolve more quickly, as expected since
it is that region from which light is last excluded as
the grating grows. What was unexpected and we be-
lieve is surprising is that, once this effect is included
by characterizing the evolution in terms of the parame-
ter x, the grating fields and electric field evolve in
such a similar manner (Egs. 32, 35) at each point in
the fiber.

The barred functions can be determined numerically,
and are independent of both the length of the fiber
and the index s, since the boundary condition (7) has
been used only. To determine s3(f) and thus complete
the determination of the grating and field, we must
use the other boundary condition (8). From Egs. (21,
29) we have

e, t>|2=%s3 Ol(el)—1]
1
IV, Blt=— sy (L5 +1] (“0)

and substituting Eqs.(40) into Eq.(8) we find

t§2|ein|2 :'}‘(14’1’;3)50(1:[,)4--1—(1—7’33)
s3(t) 2 2
+ 753 [52(tL) sin(2kL + ¢(zL))
—51(zL) cos(2kL + ¢(zrL))]
=F(r, L). 41

Finally substituting Eq.(41) into Eq.(31) we have

f P, Ld7=E, |enl't. 42)
0

After the barred functions have been numerically dete-
rmined, Eq.(42) may be used to find t in terms of
t, from which (see Eq. 31) s3(f) may be determined
for the particular length of fiber and #; under conside-
ration. Inverting Eq.(42) numerically to find (), the
complete solutions for the grating and field are deter-
mined. With this in hand, all physical quantities of in-
terest can be calculated. For example, the transmission
of the fiber is give by

n

TH=

eaut(t) JZ
N3l ey

2 42

n Itz

~oms e D) (1+50(09), 43)

where ¢,,() =f1 V(0, ¢) is the transmitted field at z=
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0~, and in deriving the second line of Eq.(43) we have
used Eqs.(40-41).

V1. Fixed point
To see qualitatively how the state of the grating in

the fiber evolves, we study the evolution of the para-
meters 1 and y, where

1 o)
F=%ee oz
_ 1 dkw) _
oK) dx =4 “d

the second equality following from the forms (32).
From Eqs.(37) and (39), we find

721

"= 50y

1#0)=0. 45)
In Fig. 9 we show a plot of u versus 7, with x as
a parameter, determined from a numerical solution of
Eqs.(36-37) with #;=1 and #,=15. From Fig. 9 we
see, since x—>o0 as ¢—>oo for all points of the fiber ex-
cept z=0, that all points of the fiber except the very
far end tend asymtotically to the state n=0, y=1/2.
This then identifies a fixed point, or attractor, for the
state of growth of the grating. Numerical investigations
indicate that there exists only one fixed point which
is independent of 7.; indeed, this independence and
the stability of the fixed point may be examined analy-
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Fig. 9. Plot of u versus n as x varies from 0 to o
for n,=1 and n,=1.5. Note that (n, 1)—(0, 1/2)
as x—>. The arrows in the figure denote the
directionof increasing x.

tically. To do this we find, using Eqs.(36-37) and the
definitions (33) and (44),

dn _ §i—s; N 25

do %5 1 5 "

dﬂ 51 2§1

—— =——n—-—4u. 46
4o 5 n 5 u (46)

From Eq.(45) we see that 0 <7(0)<0.25, so we consider
the general behavior of 5, u in the neighborhood of
n=0 by using the solutions of Egs.(36) at =0. Those
solutions, which satisfy the initial condition (39), are

- 27’21

SIz(1—7ﬁl>

G ifgi Joinn2] itcrar'] )

Using Eqs.(47) in Eqs.(46), we find

dT] o~ 251
a s "
aip 25 -

in the limit x—>co, where u=u—1/2. That is, (5, 1)
behave like the conjugate variables of a damped har-
monic oscillator, reaching a stable steady state (1, @)=
(0, 0) as x—~>c0. The universality implies that at each
point in the fiber the grating state, specified by 7 and
4 goes through the same history, but at a different
rate. Thus we see that the dynamical process approa-
ches a fixed point corresponding to a perfectly phase-
matched grating, with the region of the fiber near the
input moving faster towards that attractor than the re-
gions further away.

VII. Conclusions

In summary, there is interesting grating dynamics
to be investigated in the “internal writing” geometry
shown in Fig. 2. If a local two-photon bleaching model
is adopted, the gratings self-organize into effectively
“ideal” gratings, in the sense that they adjust themsel-
ves so that the center of the local band gap is at the
writing frequency. This corresponds to a fixed point
of the state of grating growth. More generally, for all
homogeneous growth equation of the form (10) a uni-
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versal parameter describes the evolution of the grating
at every point, with each point in the grating develo-
ping in essentially the same way. Extensions of the
kind of approach we have developed here to other

geometries and material dynamics are underway.['!
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