• Title/Summary/Keyword: 무인항공기 결함

Search Result 270, Processing Time 0.02 seconds

Drone Tech Industry Education for Elderly Workers Linking with Jobs (고령층 일자리연계를 위한 드론테크산업 교육에 관한 연구)

  • Kim, Ki-hyuk;Ahn, Gwi-Im;Lim, Hwan-Seob;Jung, Deok-Gil
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.20 no.11
    • /
    • pp.2181-2186
    • /
    • 2016
  • Recently, the drone industry rapidly rises to the surface as the new market leading the future, and it seems that the hot UAV drone market shows the similar trend to that of the smartphone. It is expected that the individual application of the drone is quickly diffused as the smartphone roles of camera and game player with the communication medium. For example, the drone is developed mainly as war weapons, but now it is getting close to our real life as the toy or tool for the aerial photography. In this paper, we studied the education for how to bring the aging population to the drone industry. Previously, the controlling skill and taking aerial photography seemed to have nothing to do with citizen seniors. However, we develop the education for try to show any positive relationship between those, in this paper, thus creating more job opportunities for them.

Orientation Analysis between UAV Video and Photos for 3D Measurement of Bridges (교량의 3차원 측정을 위한 UAV 비디오와 사진의 표정 분석)

  • Han, Dongyeob;Park, Jae Bong;Huh, Jungwon
    • Journal of the Korean Society of Surveying, Geodesy, Photogrammetry and Cartography
    • /
    • v.36 no.6
    • /
    • pp.451-456
    • /
    • 2018
  • UAVs (Unmanned Aerial Vehicles) are widely used for maintenance and monitoring of facilities. It is necessary to acquire a high-resolution image for evaluating the appearance state of the facility in safety inspection. In addition, it is essential to acquire the video data in order to acquire data over a wide area rapidly. In general, since video data does not include position information, it is difficult to analyze the actual size of the inspection object quantitatively. In this study, we evaluated the utilization of 3D point cloud data of bridges using a matching between video frames and reference photos. The drones were used to acquire video and photographs. And exterior orientations of the video frames were generated through feature point matching with reference photos. Experimental results showed that the accuracy of the video frame data is similar to that of the reference photos. Furthermore, the point cloud data generated by using video frames represented the shape and size of bridges with usable accuracy. If the stability of the product is verified through the matching test of various conditions in the future, it is expected that the video-based facility modeling and inspection will be effectively conducted.

Hovering System for Autonomous Flight of Multi-copter (멀티콥터의 자율비행을 위한 호버링 시스템)

  • Kim, Hyung-Su;Park, Byeong-Ho;Han, Young-Hwan
    • The Journal of Korean Institute of Information Technology
    • /
    • v.16 no.12
    • /
    • pp.49-56
    • /
    • 2018
  • As the era of the 4th industrial revolution comes, there is a growing interest in the use of UAVs. While various technologies are being developed using drones, controlling flight of drones is the most basic. Hovering control is essential in order to enable autonomous flight, especially during flight control of drones. In this paper, we design drones based on ATmega2560, Sonar, Optical Flow, and acceleration / gyro 6 axis sensor for drones hovering control, and developed horizontal control, altitude control, position tracking and fixed algorithm based on PID control. In this research, in order to measure the objective result of the drone, keeping the altitude immediately after the drone takes off according to the time, measure the movement value until the position is fixed and stable hovering is maintained and compared analyzed. Experimental results show that the drones can stably hover within 4cm horizontal and 2cm vertical from 50cm above the reference coordinates.

Improvement of Processing Speed for UAV Attitude Information Estimation Using ROI and Parallel Processing

  • Ha, Seok-Wun;Park, Myeong-Chul
    • Journal of the Korea Society of Computer and Information
    • /
    • v.26 no.1
    • /
    • pp.155-161
    • /
    • 2021
  • Recently, researches for military purposes such as precision tracking and mission completion using UAVs have been actively conducted. In particular, if the posture information of the leading UAV is estimated and the mission UAV uses this information to follow in stealth and complete its mission, the speed of the posture information estimation of the guide UAV must be processed in real time. Until recently, research has been conducted to accurately estimate the posture information of the leading UAV using image processing and Kalman filters, but there has been a problem in processing speed due to the sequential processing of the processing process. Therefore, in this study we propose a way to improve processing speed by applying methods that the image processing area is limited to the ROI area including the object, not the entire area, and the continuous processing is distributed to OpenMP-based multi-threads and processed in parallel with thread synchronization to estimate attitude information. Based on the experimental results, it was confirmed that real-time processing is possible by improving the processing speed by more than 45% compared to the basic processing, and thus the possibility of completing the mission can be increased by improving the tracking and estimating speed of the mission UAV.

Development of SILS platform for application system based on AR and UAV (증강현실과 UAV 기반 응용 시스템을 위한 SILS 플랫폼 개발)

  • Cho, Wan Joo;Kang, Moon Hye;Moon, Yong Ho
    • Journal of Aerospace System Engineering
    • /
    • v.15 no.1
    • /
    • pp.19-31
    • /
    • 2021
  • Recently, the development of UAV application system using augmented reality (AR) has received much attention. In general, the design and implementation of UAV application system are verified with SILS techniques before actual flight experiments. However, existing SILS environment cannot be used to verify the application system based on AR and UAV because it does not include key features related to AR. To overcome this problem, we proposed an SILS platform that could be effectively used for the development of application systems based on AR and UAV. Simulation results on accuracy, efficiency, and scalability show that the proposed platform could be effectively utilized for the development of AR and UAV based-application systems.

An Analysis of the Operational Effectiveness of Target Acquisition Radar (포병 표적탐지 레이더 운용의 계량적 효과 분석)

  • Kang, Shin-Sung;Lee, Jae-Yeong
    • Journal of the Korea Society for Simulation
    • /
    • v.19 no.2
    • /
    • pp.63-72
    • /
    • 2010
  • In the future warfare, the importance of the counter-fire operation is increasing. The counter-fire operation is divided into offensive counter-fire operation and defensive counter-fire operation. Reviewing the researches done so far, the detection asset of offensive counter-fire operation called UAV(Unmanned Aerial Vehicle) and its operational effectiveness analysis is continually progressing. However, the analysis of the detection asset of defensive counterfire called Target Acquisition Radar(TAR) and its quantitative operational effectiveness are not studied yet. Therefore, in this paper, we studied operational effectiveness of TAR using C2 Theory & MANA Simulation model, and showed clear quantitative analysis results by comparing both cases of using TAR and not using TAR.

Study on the Application of RT-DETR to Monitoring of Coastal Debris on Unmanaged Coasts (비관리 해변의 해안 쓰레기 모니터링을 위한 RT-DETR 적용 방안 연구)

  • Ye-Been Do;Hong-Joo Yoon
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.19 no.2
    • /
    • pp.453-466
    • /
    • 2024
  • To improve the monitoring of Coastal Debris in the South Korea, which is difficult to estimate due to limited resources and vertex-based surveys, an approach based on UAV(Unmanned Aerial Vehicle) images and the RT-DETR(Realtime DEtection TRansformer) model was proposed for detecting Coastal Debris. By comparing to field investigation, the study suggested the possibility of quantitatively detecting coastal garbage and estimating the total capacity of garbage deposited on the natural coastline of the South Korea. The RT-DETR model achieved an accuracy of 0.894 for mAP@0.5 and 0.693 for mAP@0.5:0.95 in training. When applied to unmanaged coasts, the accuracy for the total number of coastal debris items was 72.9%. It is anticipated that if guidelines for defining monitoring of unmanaged coasts are established alongside this research, it should be possible to estimate the total capacity of the deposited coastal debris in the South Korea.

Re-establishing Method of Stability Margin Airworthiness Certification Criteriafor Flight Control System (비행제어시스템 안정성 여유 감항인증 기준 재정립 방안)

  • Kim, Dong-hwan;Kim, Chong-sup;Lim, Sangsoo;Koh, Gi-oak;Kim, Byoung soo
    • Journal of Aerospace System Engineering
    • /
    • v.16 no.1
    • /
    • pp.17-27
    • /
    • 2022
  • A certain level of stability margin airworthiness criteria should be met to secure robustness against uncertainties between the real plant and the model in a flight control system design. The U.S. Department of Defense (DoD) specification of MIL-F-9490D and airworthiness certification standard of MIL-HDBK-516B uses gain and phase margin criteria of flight control system. However, the same stability margin criteria is applied at all development phases without considering the design maturity of each development phase of the aircraft. Ultimately, a problem arises when the aircraft operation envelope is excessively restricted. This paper proposes the relation of handling qualities and stability margin, and presents re-established stability margin criteria as a development phases and verification methods. The results of the research study are considered to contribute to the verification of the stability margin criteria more flexibly and effectively by applying the method to not only the currently manned developing aircrafts but also the unmanned vehicle to be developed in the future.

Application and Validation of Delay Dependent Parallel Distributed Compensation Controller for Rotary Wing System (회전익 시스템의 시간지연 종속 병렬분산보상제어기 적용과 검증)

  • You, Young-Jin;Choi, Yun-Sung;Jeong, Jin-Seok;Song, Woo-Jin;Kang, Beom-Soo
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.44 no.12
    • /
    • pp.1043-1053
    • /
    • 2016
  • In this paper, the application of Parallel Distributed Compensation (PDC) controller for fixed pitch rotary wing system was studied. For nonlinear modeling, T-S fuzzy model was utilized to advance system control including the tilt type UAV. PDC controller was designed through the Linear Matrix Inequality (LMI). Experiments for determining the applicability and feasibility of PDC were performed using the 1 axis attitude control equipment and simulation. To verify the performance and characteristics of the controller, Mathworks Co. Simulink was used. After then, the PDC controller performance was verified and the results with developed controller using a 1 axis attitude control equipment were compared. Verification of the feasibility of PDC controller for the fixed pitch rotary wing system and identification of the overall performance and improvement analysis was conducted based on the experimental results.

A Study on the Development Site of an Open-pit Mine Using Unmanned Aerial Vehicle (무인항공기를 이용한 노천광산 개발지 조사에 관한 연구)

  • Kim, Sung-Bo;Kim, Doo-Pyo;Back, Ki-Suk
    • Journal of Convergence for Information Technology
    • /
    • v.11 no.1
    • /
    • pp.136-142
    • /
    • 2021
  • Open-pit mine development requires continuous management because of topographical changes and there is a risk of accidents if the current status survey is performed directly in the process of calculating the earthwork. In this study, the application of UAV photogrammetry, which can acquire spatial information without direct human access, was applied to open-pit mines development area and analyzed the accuracy, earthwork, and mountain restoration plan to determine its applicability. As a result of accuracy analysis at checkpoint using ortho image and Digital Surface Model(DSM) by UAV photogrammetry, Root Mean Square Error(RMSE) is 0.120 m in horizontal and 0.150 m in vertical coordinates. This satisfied the tolerance range of 1:1,000 digital map. As a result of the comparison of the earthwork, UAV photogrammetry yielded 11.7% more earthwork than the conventional survey method. It is because UAV photogrammetry shows more detailed topography. And result of monitoring mountain restoration showed possible to determine existence of rockfall prevention nets and vegetation. If the terrain changes are monitored by acquiring images periodically, the utility of UAV photogrammetry will be further useful to open-pit mine development.