DOI QR코드

DOI QR Code

Re-establishing Method of Stability Margin Airworthiness Certification Criteriafor Flight Control System

비행제어시스템 안정성 여유 감항인증 기준 재정립 방안

  • Kim, Dong-hwan (Flight Control Law Team, Korea Aerospace Industries, Ltd.) ;
  • Kim, Chong-sup (Flight Control Law Team, Korea Aerospace Industries, Ltd.) ;
  • Lim, Sangsoo (Aerospace Technology Research Institute, Agency for Defense Development) ;
  • Koh, Gi-oak (Flight Control Law Team, Korea Aerospace Industries, Ltd.) ;
  • Kim, Byoung soo (School of Aerospace and Software Engineering, Gyeongsang National University)
  • 김동환 (한국항공우주산업(주) 비행제어법칙팀) ;
  • 김종섭 (한국항공우주산업(주) 비행제어법칙팀) ;
  • 임상수 (국방과학연구소 항공기술연구원) ;
  • 고기옥 (한국항공우주산업(주) 비행제어법칙팀) ;
  • 김병수 (경상대학교 기계항공우주공학부)
  • Received : 2021.01.08
  • Accepted : 2021.12.13
  • Published : 2022.02.28

Abstract

A certain level of stability margin airworthiness criteria should be met to secure robustness against uncertainties between the real plant and the model in a flight control system design. The U.S. Department of Defense (DoD) specification of MIL-F-9490D and airworthiness certification standard of MIL-HDBK-516B uses gain and phase margin criteria of flight control system. However, the same stability margin criteria is applied at all development phases without considering the design maturity of each development phase of the aircraft. Ultimately, a problem arises when the aircraft operation envelope is excessively restricted. This paper proposes the relation of handling qualities and stability margin, and presents re-established stability margin criteria as a development phases and verification methods. The results of the research study are considered to contribute to the verification of the stability margin criteria more flexibly and effectively by applying the method to not only the currently manned developing aircrafts but also the unmanned vehicle to be developed in the future.

실제와 모델간의 다양한 불확실성(uncertainties)에 대한 항공기의 강건성 확보를 위해 비행제어시스템은 일정 수준 이상의 안정성 여유(stability margin) 감항기준을 만족할 수 있도록 설계되어야 한다. 미 국방 규격인 MIL-F-9490D와 감항인증 규격인 MIL-HDBK-516B에는 비행제어시스템이 만족해야 하는 이득여유(gain margin)와 위상여유(phase margin) 기준을 제시하고 있다. 그러나 항공기의 개발 단계별 설계 성숙도를 고려하지 않고 전 개발단계에서 동일한 안정성 여유 기준이 적용되면서, 궁극적으로는 항공기 운용영역이 과도하게 제한되는 문제가 발생한다. 본 논문에서는 조종성과 안정성 여유의 관계를 제시하고 개발 단계와 입증 방법에 따라 안정성 여유 기준을 재정립하는 방안을 제시한다. 연구의 결과는 현재 개발되고 있는 항공기뿐만 아니라 향후에 전개될 무인 비행체 개발 시에 적용하여 보다 유연하고 효과적인 방법으로 안정성 여유 기준을 입증하는데 기여하리라 판단한다.

Keywords

References

  1. C. S. Kim, "Flight Control System Design and Verification Process", Journal of Control, Automation and Systems Engineering, Vol. 14, No. 8, August 2008
  2. JOSE B. CRUZ, JR., JAMES S. FREUDENBERG, DOUGLAS P. LOOZE, "A Relationship Between Sensitivity and Stability of Multivariable Feedback Systems", IEEE Transactions on Automatic Control, Vol. AC-26, No. 1, February 1981.
  3. "Flight Control Systems - Design, Installation and Test of Piloted Aircraft, General Specification for," MIL-STD-9490, June., 1975.
  4. "ASC/EN Airworthiness Certification Criteria Expanded Version of MIL-HDBK-516B," 26 Sep., 2005.
  5. Flight Manual F-16 C/D Block 52, Lockheed Martin Corporation, 15 May 2003.
  6. Nikolaus Moritz and Robert Osterhuber, "Three-Stage Gradient-Based Optimization Scheme in Design of Feedback Gains within Eurofighter Primary Control Laws", AIAA Guidance, Navigation, and Control Conference and Exhibit, 21-24 August 2006, Keystone, Colorado
  7. David W. Nixon, "Flight Control Law Development for the F-35 Joint Strike Fighter", Lockheed Martin Aeronautics, 5 October, 2004
  8. "T-50 Control Law Flying Qualities Sensitivity Studys," DSR 02-0441, 21 February, 2002.
  9. "Vehicle Control and Management System(VCMS)," JSSG-2008, 30 October, 1998.
  10. C. S. Kim, B. M. Hwang, S. Y. Kim and S. J Kim, "A Study on Aircraft Sensitivity Analysis for Supersonic Air-Data Error at Low Altitude," Journal of Korean Society for Aeronautical and Space Science, Vol. 33, No. 11, 2005, pp.80~87. https://doi.org/10.5139/JKSAS.2005.33.11.080
  11. C. Lee, J. H. Seo, H. B. Ham, I. J. Cho and H. S. Woon, "Throughput Improvement and Power-Interruption Consideration of Fly-By-Wire Flight Control Computer," Journal of Korean Society for Aeronautical and Space Science, Vol. 35, No. 10, 2007.
  12. Katsuhhiko Ogata, "Modern Control Engineering"
  13. Kim Byeong-soo et al. "Flight Dynamics and Control", Gyeongmun Publishers, 2016.
  14. Franklin, G.F., Powell, J.D., Emani-Naeini, A., "Feedback Control of Dynamic Systems. Addison- Wesley Publishing Company, 1986.
  15. "Military Standard - Flying Qualities of Piloted Aircraft", MIL-STD-1797A, Jan, 1990.
  16. Military Aircraft Airworthiness Certification Business Regulations [No. 214], Defense Acquisition Program Administration, 2013.03.19.
  17. John T. Bosworth and Susan J. Stachowiak, "Real-Time Stability Margin Measurements for X-38 Robustness Analysis", NASA Dryden Flight Research Center Edwards, California, February 2005