DOI QR코드

DOI QR Code

Application and Validation of Delay Dependent Parallel Distributed Compensation Controller for Rotary Wing System

회전익 시스템의 시간지연 종속 병렬분산보상제어기 적용과 검증

  • You, Young-Jin (Department of Aerospace Engineering, Pusan National University) ;
  • Choi, Yun-Sung (Department of Aerospace Engineering, Pusan National University) ;
  • Jeong, Jin-Seok (Department of Aerospace Engineering, Pusan National University) ;
  • Song, Woo-Jin (Graduate School of Convergence Science, Pusan National University) ;
  • Kang, Beom-Soo (Department of Aerospace Engineering, Pusan National University)
  • Received : 2016.07.04
  • Accepted : 2016.11.30
  • Published : 2016.12.01

Abstract

In this paper, the application of Parallel Distributed Compensation (PDC) controller for fixed pitch rotary wing system was studied. For nonlinear modeling, T-S fuzzy model was utilized to advance system control including the tilt type UAV. PDC controller was designed through the Linear Matrix Inequality (LMI). Experiments for determining the applicability and feasibility of PDC were performed using the 1 axis attitude control equipment and simulation. To verify the performance and characteristics of the controller, Mathworks Co. Simulink was used. After then, the PDC controller performance was verified and the results with developed controller using a 1 axis attitude control equipment were compared. Verification of the feasibility of PDC controller for the fixed pitch rotary wing system and identification of the overall performance and improvement analysis was conducted based on the experimental results.

본 논문에서는 비선형성을 가지는 고정피치 프로펠러를 사용하는 회전익 시스템의 병렬분산보상제어기 적용에 대한 연구 내용을 다루고 있다. 틸트 형 무인기 등 발전된 시스템의 제어기 설계 시 요구되는 비선형 모델링을 위해 T-S 퍼지모델을 사용하였다. 병렬분산보상 제어기는 선형행렬부등식을 이용해 설계하였다. 병렬분산보상제어기 적용가능성 판단을 위한 실험은 시뮬레이션과 1축 자세제어장비를 이용해 수행하였다. Mathworks의 Simulink를 사용해 시뮬레이션을 진행하고 설계한 제어기의 전반적인 성능과 특성을 파악하였다. 이후 1축 자세제어장비와 기 개발된 제어기를 이용해 병렬분산보상기법을 적용한 제어기와 결과를 비교하고 성능을 검증하였다. 시뮬레이션 및 실험 결과를 토대로 고정피치 프로펠러를 사용하는 회전익 시스템에서 설계한 병렬분산보상제어기 적용가능성과 개선사항을 분석하였다.

Keywords

References

  1. T. Takagi and M. Sugeno, "Fuzzy Identification of Systems and Its Applications to Modeling and Control", IEEE Transactions on Systems, Man and Cybernetics, Vol. 1, No.1, Jan. 1985, pp.116-132.
  2. H. O. Wang, K. Tanaka and M. F. Griffin, "Parallel Distributed Compensation of Nonlinear Systems by Takagi-Sugeno Fuzzy Model", IEEE International Conference on Fuzzy Systems and Fuzzy Engineering Symposium, Vol. 2, Mar. 1995, pp.531-538.
  3. H. O. Wang, K. Tanaka and M.F. Griffin, "An approach to fuzzy control of nonlinear systems: Stability and design issues", IEEE Transactions on Fuzzy Systems, Vol. 4, No.1, Feb. 1996, pp.14-23. https://doi.org/10.1109/91.481841
  4. M. G. Shon, "Design of stabilizing controller based on T-S Fuzzy Model for Two-Rotor System", M. S. Dissertation, Changwon National University, Republic of Korea, 2008
  5. H. G. Min, E. T. Jeung and S. H. Kwon, "An Improved Method to Construct T-S Fuzzy Model", ICCAS2003 Fall Conference, pp.2264-2269.
  6. K. R. Lee, J. H. Kim, and E. T. Jeung, "Delay-dependent Fuzzy $H_2/H_{\infty}$ Controller Design for Delayed Fuzzy Dynamic Systems", Journal of Institute of Electronics and Information Engineers, Vol. 41, No.5, Sep. 2004, pp.19-27.
  7. Y. S. Choi, Y. J. You, J. S, Jeong and B. S. Kang, "Application of SIMC based Quad-rotor Cascade Control by using 1-axis Attitude Control Test-bench", Journal of Advanced Navigation Technology, Vol 19, No.6, Dec. 2015, pp.473-483. https://doi.org/10.12673/jant.2015.19.6.473
  8. B. Chen and X. Liu, "Delay-Dependent Robust $H_{\infty}$ Control for T-S Fuzzy Systems With Time Delay", IEEE Transactions on Fuzzy Systems, Vol. 13, No.4, Aug. 2005, pp.544-556. https://doi.org/10.1109/TFUZZ.2004.840112
  9. S. H. Park, J. B. Song, M. S. Roh, W. J. Song and B. S. Kang, "Aviation Communication Technique: Design and Implementation of Mobile Network Based Long-Range UAV Operational System for Multiple Clients", Journal of Advanced Navigation Technology, Vol. 19, No.3, Jun. 2015, pp.217-223. https://doi.org/10.12673/jant.2015.19.3.217
  10. J. S. Jeong, Y. S. Byun, W. J. Song and B. S. Kang, "Study on Performance Prediction of Electric Propulsion System for Multirotor UAVs", Journal of the Korean Society of Precision Engineering, Vol. 33, No.5, May. 2016, pp.1-10.
  11. S. K. Nguang, "$H_{\infty}$ Fuzzy Output Feedback Control Design for Nonlinear Systems: An LMI Approach", IEEE Transactions on Fuzzy Systems, Vol. 11, No.3, Jun. 2003, pp.190-194.
  12. J. H. Jang, E. T. Jeung and S. H. Kwon, "A study on Control for the Two-Rotor System Using Inertial Sensors", Journal of Institute of Control, Robotics and Systems, Vol. 19, No.3., Mar. 2013, pp.190-194. https://doi.org/10.5302/J.ICROS.2013.12.1811
  13. E. T. Jeung, S. H. Kwon and K. R. Lee, "Construction of T-S fuzzy model for nonlinear systems", Journal of Control, Automation and System Engineering, Vol. 8, No.11, Nov. 2002, pp.941-947. https://doi.org/10.5302/J.ICROS.2002.8.11.941
  14. PinkWink : http://pinkwink.kr
  15. P. Gahinet, A. Nemirovski, A. J. Laub and M. Chilali, LMI Control Toolbox, The Math Works Ins., 1995.
  16. Mathworks, Using Simulink$^{(R)}$ v8.2
  17. Dassault Systemes, Using SolidWorks 2014
  18. Texas Instruments , Using Code Composer$^{TM}$ Studio 5.5.0