• Title/Summary/Keyword: 무기염 농도

Search Result 252, Processing Time 0.039 seconds

Comparison of Patterns of Mineral Ions and Growth Responses of 4 Legume Plants by Nitrogen Applications under Saline Conditions (염 환경에서 질소공급에 따른 4종 콩과식물의 생장반응과 무기이온양상의 비교)

  • 배정진;추연식;송승달
    • Journal of Life Science
    • /
    • v.13 no.4
    • /
    • pp.473-480
    • /
    • 2003
  • We analyzed the patterns of mineral ions and growth responses among symbiotic nitrogen fixing legumes by external nitrogen applications under salt gradients. Glycine max, Phaseolus angularis and Albizzia julibrissin showed remarkable growth inhibition above 40 mM NaCl treatments, but Cassia tora did not exhibit any visible injury symptom up to 100 mM NaCl treatments. As to ionic pattern, the $Na^+$ and $Cl^-$contents in leaves of G. max, P. angularis and A. julibrissin progressively increased with higher contents of external salinity. Compared to other plants, C. tora excluded $Na^+$more efficiently and maintained rather constant ionic contents in spite of high salt levels. With a few exception, these 4 legume plants exhibited better growth by the external nitrogen supply rather than the contribution of symbiotic nitrogen fixation only under saline condition.

The Preparation of Storage-Stable Liquid Dyes by Counter Diffusion (역확산을 이용한 액체염료의 제조)

  • Park, Jong-Sang;Lee, Chung Hak
    • Applied Chemistry for Engineering
    • /
    • v.2 no.4
    • /
    • pp.399-410
    • /
    • 1991
  • New separation process was developed for the preparation of storage-stable liquid dyes. The extent of aggregation of dye molecules was measured with respect to storage time of liquid dyes under different salt environments. Hollow-fiber membranes were modified by immobilization of inorganic crystals onto the surface of membrane. Using surface-treated membranes, counter diffusion technology was introduced to selectively remove salts from dye solution. The separation factors were 10-700, and the loss of dye molecules was less than 0.4 %. Membrane permeabilities for sodium ions($U_{M,Na}$) and dye molecules($U_{M,Dye}$) were found to be 2.75 and $0.72l/m^2/hr$, respectively, in the case of surface-treated membranes. The effects of various operating parameters on desalting efficiency were also investigated.

  • PDF

Factors Controlling Temporal-Spatial Variations of Marine Environment in the Seomjin River Estuary Through 25-hour Continuous Monitoring (25시간 연속관측을 통한 섬진강 하구에서 시공간적 해양환경 변화 조절 요인)

  • Park, Mi-Ok;Kim, Seong-Soo;Kim, Seong-Gil;Kwon, Jinam;Lee, Suk-Mo;Lee, Yong-Woo
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.15 no.4
    • /
    • pp.314-322
    • /
    • 2012
  • In order to elucidate temporal variations of temperature, salinity, pH, dissolved oxygen (DO), suspended particulate matter (SPM), dissolved inorganic nutrients, and chlorophyll a, we performed 25-hour continuous monitoring in the Seomjin River Estuary in March (dry season) and July (rainy season) 2006. We also investigated spatial variations of marine environmental parameters across a saline gradient. In the Seomjin River Estuary, continuous monitoring results revealed that salinity variations were mainly affected by tidal cycle in the dry season and by river discharge in the rainy season. In the dry season, the spatio-temporal distribution of dissolved inorganic nutrient (nitrate, nitrite, and silicate) concentrations showed a good correlation with tidal cycle. While nutrient concentrations in rainy season showed not much variance in time. There were 6 and 4 times higher dissolved inorganic nitrogen and phosphorus concentrations in the rainy season than those in the dry season, respectively. Silicate concentration was 43 times higher in the rainy season than that in the dry season. Chlorophyll a concentration was higher in the dry season than that in the rainy season showing high nutrient concentrations. The results of this study, spatio-temporal variations of marine environmental factors are determined by both tidal cycle and river discharge. It seems that chlorophyll a concentration is related to the river discharge than dissolved inorganic nutrient distribution.

Characteristics of Spatio-temporal Variation of the Water Quality in the Lower Keum River (금강 하류역에서 수질의 시공간적 변화특성)

  • YANG Han-Soeb;KIM Seong-Soo
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.23 no.3
    • /
    • pp.225-237
    • /
    • 1990
  • Various chemical constituents were measured from April to August 1988 at the down-ward 20 stations of Keum River, which is located in the Midwest of Korea, to understand the characteristics of water quality with respect to spatio-temporal variations of each constituent. The 24-hrs continuous measurements with 2-hrs interval were made simultaneously at station 2 near the estuary weir and station 9(Ganggyeong) of 35 km upstream from the weir in April. By the results observed for one day in April at station 2, salinity has a range of $7.88\~22.14\%_{\circ}$ and its temporal variability is identical to the pattern of tidal cycle in the neigh-bouring Kunsan Harbor. However, turbidity shows relatively high values only at an interval of 4~5 hours after the lowest salinity time, though hourly fluctuation of pH is very small. Silicate and dissolved inorganic nitrogen have inversively linear correlationships with salinity, implying the concentration of the two nutrients strongly regulated by estuarine mixing of sea and river waters. In contrast, phosphate sustains roughly a constant level over a wide salinity range and distinctly lower values than those corresponding to nitrate in the oceans. Such distributions of phosphate have been observed in some estuaries, and interpreted as driven by removal of dissolved phosphate into bottom sediments and the bufforing of phosphate by particulate matter. COD values at station 2 are relatively high in day-time(particularly afternoon) and in high-salinity periods. At station 9, saltwater intrusion was never found but water level changed to the extent of 2.5 m for one day. Although each parameter at this station exhibits very slight variations in their abundance for 24 hours compared with station 2, the contents of COD, silicate and ammonia are significantly higher than at station 2. Concentration of suspended matter is relatively high in the brackish water region up to $\~20$ km above the river mouth, probably due to strong tidal stirring of the bottom de-posits. Also, relatively high pH, COD and $O_2$ saturation at the upward stations of $40\~50$ km from the weir are presumably attributable to active photosynthesis of plants in the region. In general, COD and nutrients except phosphate are higher values at the upper stations than in the estuary zone, and show the highest abundances in July nearly at all stations. Finally, in the estuarine region tidal mixing of sea-river waters seems to be an important factor controlling the distributions of turbidity, COD, silicate and nitrate as well as salinity. However, water quality in the upward fresh-water zone is remarkably variable according to months or seasons.

  • PDF

Sorption of Dissolved Inorganic Phosphorus to Zero Valent Iron and Black Shale as Reactive Materials (반응매질로서의 영가철 및 블랙셰일에 용존무기 인산염 흡착)

  • Min, Jee-Eun;Park, In-Sun;Ko, Seok-Oh;Shin, Won-Sik;Park, Jae-Woo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.9
    • /
    • pp.907-912
    • /
    • 2008
  • In order to reduce the availability of dissolved inorganic phosphorus in surface water, lakes, and estuaries, black shale and zero valent iron can be used as reacitve materials. Sorption of phosphate to sampled sediment, black shale, and zero valent iron was quantitatively evaluated in this research. Effect of coexistence of calcium was also tested, since coexisting ions can enhance the precipitation of phosphate. An empirical kinetic model with fast sorption(k$_t$), slow sorption(k$_s$), and precipitation(k$_p$) was well fitted to experiment data from this research. Langmuir and Freundlich sorption isotherms were also used to evaluated phosphate maximum sorption capacity. Calcium ions at 0, 1 and 5 mM affected the precipitation kinetic coefficient in empirical kinetic model but did not have impact on the maximum sorbed concentration.

The origin of dissolved inorganic nutrients by Kuroshio Intermediate Water in the eastern continental shelf of the East China Sea (동중국해 외대륙붕 저층수의 영양염 기원)

  • Chung Chang Soo;Hong Gi Hoon;Kim Suk Hyun;Kim Yong Il;Moon Duk Soo;Park Jun Kun;Park Yong Chul;Lee Jae Hak;Lie Heung Jae
    • Journal of the Korean Society for Marine Environment & Energy
    • /
    • v.3 no.3
    • /
    • pp.13-23
    • /
    • 2000
  • The distributions of dissolved inorganic nutrient contents were investigated along transection line J (30° N) in the eastern East China Sea in December 1993 and August 1994, respectively. The concentrations of nitrate and silicate in the Kuroshio Surface Water (KSW) with high temperature and high salinity were low below 2μM and 5μM, respectively. However, these were increased sharply with depth and ranged from 20 to 40, 45 to 100μM, respectively, in the Kuroshio Intermediate Water (KIW). The relationship between temperature and nutrients suggests that Kuroshio Intermediate Water with rich nutrients were intruded into the bottom water of the outer continental shelf in the East China Sea. The bottom water of the outer continental shelf was made of two end-members mixing; nutrient depleted warm water and nutrient enriched cold water. Based on temperature, salinity and silicate concentration, the nutrients in the bottom water of the outer continental shelf suggusted to be supplied through the vertical mixing of Kuroshio subsurface water in the depth range of 100~400m. Upwelled nutrient rich water appears to be a important source of nutrients for primary production in the continental shelf area of the East China Sea.

  • PDF

Non-Outbreak Cause of Cochlodinium Bloom in the Western Coast of Jaran Bay in Summer, 2013 : On the Basis of Nutrient Data (2013년 하계 자란만 서부 연안의 Cochlodinium 적조 미발생 원인 : 영양염 자료를 중심으로)

  • Kwon, Hyeong-Kyu;Kim, Hyun-Jung;Yang, Han-Seob;Oh, Seok-Jin
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.20 no.4
    • /
    • pp.372-381
    • /
    • 2014
  • We investigated cause of non-outbreak of Cochlodinium polykrikoides blooms in the western coast of Jaran Bay during Summer, 2013, by combining chemical field data and physiological data of C. polykrikoides, which had been already published. The predominant species were mainly diatoms, and dominant species was Cerataulina pelagica, Chaetoceros spp., Navicula spp. and Nitzschia spp.. In case of dissolved inorganic nutrients in the western coast of Jaran Bay, dissolved inorganic phosphorus (DIP) was similar to that in previous outbreak period of C. polykrikoides blooms, but dissolved inorganic nitrogen (DIN) was lower. C. polykrikoides might be disadvantageous in competition with diatom species because half-saturation constants (Ks) of C. polykrikoides for inorganic nutrients was lower than those of diatoms. Also, the western coast of Jaran Bay, where DIN concentration is relatively low, was an unfavorable environment for growth of C. polykrikoides characterized by nitrogen dependence. Therefore, C. polykrikoides which have the disadvantageous position for competition of inorganic nutrient might have been suppressed by diatom blooms under environment of low nutrient in the western coast of Jaran Bay.

Alkaline and Antioxidant Effects of Bamboo Salt (죽염의 알칼리성 및 항산화 효과)

  • Zhao, Xin;Jung, Ok-Sang;Park, Kun-Young
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.41 no.9
    • /
    • pp.1301-1304
    • /
    • 2012
  • Mineral contents of various salts were determined by the ICP-OES method. Bamboo salt (baked 9 times) contained more potassium, calcium, magnesium, and manganese, compared to purified and solar salts. Bamboo salt had a pH of 11.04, higher than those of purified (6.29) and solar (9.13) salts. Contents of [$OH^-$] were measured by using the FT-IR spectra. Bamboo salt exhibited higher reduction potential and contained more OH groups than purified and solar salts. The reduction peak of bamboo salt was observed to be about three times broader than that of solar salt in terms of redox potential amperometry. At a salt concentration of 25%, bamboo salt showed higher radical scavenging activities (81.4%) than solar (5.0%) and purified (2.0%) salts, as evaluated by DPPH assay. Bamboo salt revealed alkaline property, more OH groups and antioxidative activity.

Spatiotemporal Variations of Marine Environmental Parameters in the South-western Region of the East Sea (동해남부연안 해양환경특성 시공간적 변화)

  • Won, Jong-Ho;Lee, Young-Woo
    • The Sea:JOURNAL OF THE KOREAN SOCIETY OF OCEANOGRAPHY
    • /
    • v.20 no.1
    • /
    • pp.16-28
    • /
    • 2015
  • In order to elucidate the spatiotemporal variations of marine environmental parameters, we collected seawater samples in the south-western region of the East Sea in May, August, and November 2012 and February 2013. The concentrations of dissolved inorganic nutrients (dissolved inorganic nitrogen, phosphorus, and silicate) in surface seawater during the summer season were lower than those during autumn and winter seasons, which the mixed layer is deeper. The low nutrient concentration in spring and summer seasons seems by consumption of dissolved inorganic nutrients by phytoplankon photosynthesis (high chlorophyll a concentration) and the limited supply of dissolved inorganic nutrients from subsurface layer having high nutrients. The low nutrient concentration during spring season seems to be related to the limited supply of dissolved inorganic nutrients from land and subsurface layer because the concentration of chlorophyll a was low. The DIN:DIP ratio was a wide range of average $15.6{\pm}13.6$ in the surface seawater compared to that of average $14.8{\pm}4.2$ in the bottom seawater during sampling periods. The dissolved inorganic nitrogen might act as a limiting factor of the growth of phytoplankton because the DIN:DIP ratio (on average $8.35{\pm}4.67$) was low during the spring season.