Sorption of Dissolved Inorganic Phosphorus to Zero Valent Iron and Black Shale as Reactive Materials

반응매질로서의 영가철 및 블랙셰일에 용존무기 인산염 흡착

  • Min, Jee-Eun (Department of Civil Engineering, Hanyang University) ;
  • Park, In-Sun (Department of Civil Engineering, Hanyang University) ;
  • Ko, Seok-Oh (Department of Civil Engineering, Kyunghee University) ;
  • Shin, Won-Sik (Department of Environmental Engineering, Kyungpook National University) ;
  • Park, Jae-Woo (Department of Civil Engineering, Hanyang University)
  • Published : 2008.09.30

Abstract

In order to reduce the availability of dissolved inorganic phosphorus in surface water, lakes, and estuaries, black shale and zero valent iron can be used as reacitve materials. Sorption of phosphate to sampled sediment, black shale, and zero valent iron was quantitatively evaluated in this research. Effect of coexistence of calcium was also tested, since coexisting ions can enhance the precipitation of phosphate. An empirical kinetic model with fast sorption(k$_t$), slow sorption(k$_s$), and precipitation(k$_p$) was well fitted to experiment data from this research. Langmuir and Freundlich sorption isotherms were also used to evaluated phosphate maximum sorption capacity. Calcium ions at 0, 1 and 5 mM affected the precipitation kinetic coefficient in empirical kinetic model but did not have impact on the maximum sorbed concentration.

본 연구는 지표수나 호소수 등에서 유기 및 무기오염물질의 저감을 위해 반응매질로서 사용되는 black shale 및 영가철의 수중의 무기인산염을 흡착제거하는 데 있어서의 정량적 특성을 알아보았다. 무기인산염의 회분식 흡착실험에는 갯벌에서 마련한 퇴적토, black shale, 영가철이 흡착제로 사용되었으며 인산염의 흡착에 미치는 영향을 공존 칼슘이온의 농도를 0, 1, 5 mM로 변화시켜 실험하였다. 칼슘이온의 공존과 함께 세 흡착제에 대한 인산염 농도감소를 빠른 흡착계수(k$_f$), 느린 흡착계수(k$_s$)과 침전계수(k$_p$)로 구성된 kinetic model을 이용하여 해석하였다. 등온흡착의 결과는 Langmuir와 Freundlich 모델을 적용하였으며 퇴적토, black shale, 영가철에 대한 Freundlich 모델의 K$_f$값은 각각 1.141, 7.721, 그리고 4.873였다. 공존하는 칼슘이온과의 침전가능성으로 인하여 kinetic model에서는 칼슘농도와 침전제거간의 상관관계가 있었으나 등온흡착식에서 인산염의 최대흡착량에는 칼슘농도가 영향을 미치지 않았다.

Keywords

References

  1. 최광순, 김범철, '조류에 의한 유기인산염분해효소의 Kinetic Parameters에 관한 연구,' Korean J. Limnol., 33(4), 380-386(2000)
  2. 전승수, 갯벌총서#1. 우리나라 갯벌-자연생태의 특성, 해양수산부, 84(2005)
  3. Lee, C. H., Lee, Y. B., Lee, H., and Kim, P. J., 'Reducing phosphorus release from paddy soils by a fly ash-gypsum mixture,' Bioresour. Technol., 98, 1980-1984(2007) https://doi.org/10.1016/j.biortech.2006.07.050
  4. Berg, U., Neumann, T., Donnert, D., Nuesch, R., and Stuben, D., 'Sediment capping in eutrophic lakes - efficiency of undisturbed calcite barriers to immobilize phosphorous,' Appl. Geochem., 19, 1759-1771(2004) https://doi.org/10.1016/j.apgeochem.2004.05.004
  5. Wauer, G., Gonsiorczyk, T., Kretschmer, K., Casper, P., and Koschel, R., 'Sediment treatment with a nitrate-storing compound to reduce phosphorus release,' Water Res., 39, 494-500(2005) https://doi.org/10.1016/j.watres.2004.10.017
  6. Stout, W. L., Sharpley, A. N., and Pionke, H. B., 'Reducing soil phosphorus solubility with coal combustion by-products,' J. Environ. Qual., 27, 111-118(1998) https://doi.org/10.2134/jeq1998.00472425002700010016x
  7. Sakadevan, K. and Bavor, H. J., 'Phosphate adsorption characteristics of soils, slags, and zeolite to be used as substrates in constructed wetland systems,' Water Res., 32(2), 393-399(1998) https://doi.org/10.1016/S0043-1354(97)00271-6
  8. Forbes, M. G., Dickson, K. R., Golden, T. D., Hudak, P., and Doyle, R. D., 'Dissolved phosphorus retention of light-weight expanded shale and masonry sand used in subsurface flow treatment wetlands,' Environ. Sci. Technol., 38(3), 892-898(2004) https://doi.org/10.1021/es034341z
  9. Akhurst, D. J., Jones, G. B., Clark, M., and McConchie, D., 'Phosphate removal from aqueous solutions using neutralised bauxite refinery residues(BauxsolTM),' Environ. Chem., 3(1), 65-74(2006) https://doi.org/10.1071/EN05038
  10. Detenbeck, N. E. and Brezonik, P. L., 'Phosphorus sorption by sediments from a soft-water seepage lake. 1. An evaluation of kinetic and equilibrium models,' Environ. Sci. Technol., 25(3), 395-403(1991) https://doi.org/10.1021/es00015a003
  11. Chen, Y. S. R., Butler, J. N., and Stumm, W., 'Kinetic study of phosphate reaction with aluminum oxide and kaolinite,' Environ. Sci. Technol., 7(4), 327-332(1973) https://doi.org/10.1021/es60076a007
  12. Kopacek, J., Borovec, J., Hejzlar, J., Ulrich, K.-U., Norton, S. A., and Amirbahman, A., 'Aluminum control of phosphorus sorption by lake sediment,' Environ. Sci. Technol., 39(22), 8784-8789(2005) https://doi.org/10.1021/es050916b
  13. Min, J. E., Lee, T., Choi, J., and Park, J. E., 'Black shale as a sorbent for trichloroethylene and Cr(VI),' Environ. Technol., 26, 643-652(2005) https://doi.org/10.1080/09593330.2001.9619504
  14. Min, J. E., Kim, M., Pardue., J. and Park, J., 'Reduction of trichloroethylene and nitrate by zero valent iron with peat,' J. Environ. Sci. Health Part A., 43A(2), (2008)
  15. Ma, J. and Zhu, L., 'Simultaneous sorption of phosphate and phenanthrene to inorgano-organo-bentonite from water,' J. Hazard. Mater., B136, 982-988(2006)
  16. Lijklema, L., 'Interactio of orthophosphate with iron(III) and aluminium hydroxides,' Environ. Sci. Technol., 14(5), 537-541(1980) https://doi.org/10.1021/es60165a013
  17. Chitrakar, R., Tezuka, S., Sonoda, A., Sakane, K., Ooi, K., and Hirotsu, T., 'Phosphate adsorption on synthetic goethite and akaganite,' J. Colloid Interface Sci., 298, 602-608(2006) https://doi.org/10.1016/j.jcis.2005.12.054