• Title/Summary/Keyword: 몰탈실험

Search Result 32, Processing Time 0.023 seconds

Equations Evaluation for and Shear Behavior Characteristics of Joint according to Cement Composite Types (시멘트 복합체 종류에 따른 접합부의 전단거동 및 산정식 평가)

  • Jeon, Esther;Yun, Hyun-Do;Lee, Young-Oh;Kim, Sun-Woo;Ryu, Seung-Hyun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.97-98
    • /
    • 2010
  • This paper discusses shear behavior of Joint with premix mortar and strain hardening cement composites(SHCC) with PVA and PE fibers. The main variables considered include the type of cement composites(premixed mortar, SHCC with hybrid fiber) and reinforcement. It was evaluated that shear load had a good accordance with the test and equation result.

  • PDF

Double Punch Tensile Strength of Cylindrical Mortar with Steel Fibers aligned in Circumferential Direction by Electro-Magnetic Field (전자기장을 이용하여 강섬유를 원주방향으로 배열시킨 원통형 몰탈의 Double Punch 인장강도)

  • Shin, Sun-Chul;Mukharromah, Nur Indah;Moon, Do-Young;Park, Dae-Wook
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.10 no.1
    • /
    • pp.40-47
    • /
    • 2022
  • In this study, the direction of the steel fibers mixed in the normal mortar and the steel slag mortar was arranged in the circumferential direction by using an electromagnetic field, and a double punch test was performed to evaluate the effect of magnetic filed exposure on tensile strength and on fracture energy. As a result of the experiment, it was confirmed that it is possible to arrange the steel fibers in the circumferential direction. Tensile strength and displacement at failure were also increased according to the arrangement of steel fibers due to exposure to electromagnetic fields. On the other hand, the fracture energy hardly increased. It is considered that there was a limit in resisting crack growth because the area where the arrangement of steel fibers could be adjusted under the electromagnetic field was not deep to center of specimen and the end shape of the steel fibers were straight not hooked. Additional research is needed to address these issues.

The Effect of Joint Condition on Rock Fragmentation in Bench Blasting (절리간격과 방향이 벤치발파시 암석파쇄도에 미치는 영향에 대한 실험 연구)

  • Choi Yong-Kun;Lee Chung-In
    • Explosives and Blasting
    • /
    • v.23 no.2
    • /
    • pp.37-44
    • /
    • 2005
  • Recent studies reported that natural block size of rock and joint orientation highly affect on rock fragmentation. In this study, blasting test using high strength cement mortar was carried out to verify this fact. The result of this test indicated that fragmentation is influenced by the joint interval, and at same joint interval condition, fragmentation depends on joint orientation. These results are significantly coincident with field investigations.

Performance Evaluation of the Joint using SHCC based on the Existence of the Tie Bar (SHCC를 사용한 접합부의 보강근 유무에 따른 성능 평가)

  • Song, Young-Jae;Yun, Hyun-Do;Jeon, Esther;Lee, Young-Oh;Nam, Sang-Hyun;Cha, Jun-Ho
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2010.05a
    • /
    • pp.25-26
    • /
    • 2010
  • Strain-hardening cementitious composite(SHCC) has been expected excellent reinforcement performance in beam-column joint area. The main variables considered include the type of cement composites(premixed mortar, SHCC with hybrid fiber) and shape and existence of the tie bar. As the result of the tests, existence of the tie bar specimen showed better overall behavior than another.

  • PDF

Pilot Investigation on Moisture Variation Aspects in Pavement Materials Based on Relative Humidity Measurements (도로포장 재료의 상대습도 측정에 의한 수분변화 특성 분석 기초 연구)

  • Kim, Seong-Min;Park, Hee-Beam;Cho, Byoung-Hooi
    • International Journal of Highway Engineering
    • /
    • v.8 no.4 s.30
    • /
    • pp.87-99
    • /
    • 2006
  • This study was conducted to investigate whether the moisture variation aspects in pavement materials can be analyzed based on the convenient and reliable relative humidity(RH) measurement techniques. First, the ambient RH was measured using various sensors and the accuracies and calibration methods of the sensors were examined. Then, the RH of a cement mortar specimen was measured using the reliable sensors and the data was analyzed. In addition, the feasibility of using the RH measurement sensors to analyze the permeability of pavement materials was investigated. From this study, it was found that the Hygrochron was the most appropriate sensor to measure the RH of pavement materials, and the proper installation and calibration methods were developed. The RH of the cement mortar specimen tended to approach the ambient RH and was not much affected by the variation of the ambient RH. The specimen's RH variations at the surface and at the center showed a clear time lag. The RH measurement sensor was also found to be an appropriate tool for water permeability tests, and the methodologies to evaluate the permeability of pavement materials were proposed.

  • PDF

Development of Inorganic Binder Using Ash from Sewage Sludge Incinerator I (하수슬러지 소각재를 이용한 무기바인더 개발 I)

  • Lee, Hyun-Joo
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.36 no.12
    • /
    • pp.843-850
    • /
    • 2014
  • This study investigated to recycle ash produced in the sewage sludge incinerator using reduction/stabilization. Nonsintering process was performed by binding cement, geobond and sand mixed with sewage sludge ash (SSA). Results showed that unconfined compressive strength could be obtained components of sewage sludge ash. it exceeded more than double score of the 22.54 Mpa ($229.7kg/cm^2$) Korean standard. chemical ingradients of the sewage sludge ash was mainly composed of $SiO_2$, $Al_2O_3$, $Fe_2O_3$, CaO and others, which were similar to those of the each binders consisting cement and geobond. microstructure of solidified speceimen for the different admixture was related to the compressive strength according to SEM analysis. optimum mixing range of the sewage sludge ash to inorganic binder was found to be 10~40% which can widly safely regulate the confined compressive strength. This study revealed the sewage sludge ash can be partial replacement of the inorganic binder for recycling.

Effect of Milled Glass Fibers on Corrosion Resistance of PSC Grout Mortar (초단유리섬유가 PSC 그라우트의 부식저항성능에 미치는 영향)

  • Moon, Do-Young;Kim, Sang-Woon;Kim, Dong-Joo
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.19 no.6
    • /
    • pp.37-45
    • /
    • 2015
  • In this experimental study, effect of milled glass fibers was investigated on corrosion resistance of PSC grout mortar. In order to check whether the mortar mixture with milled glass fibers satisfy the required properties as a PSC grout, time of flow, bleeding and compressive strength measured. The corrosion resistance were investigated through chloride ion migration test, mortar absorption test and surface resistivity measurement. It is confirmed that all proportions with milled glass fibers have better corrosion resistance than that with only OPC binder. Time of flow was reduced but the bleeding was increased to unacceptable level by using milled glass fibers. Consequently, the mix proportion with milled glass fibers for a PSC grout should be modified to have lower water/binder ratio.

An Experimental Study on the Bearing Characteristics of Auger-Cast Pile Installed Using Expansive Mortar

  • Yoon, Sung-Soo;Lee, Won-Je;Lee, Woo-Jin
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.3
    • /
    • pp.99-111
    • /
    • 1999
  • The frictional capacity of auger-cast piles is often very small because of the disturbance of the soil surrounding the pile during the excavation process. Usage of expansive agents and a pressurized injection technique for auger-cast piles should improve the frictional resistance between pile and soil. This paper presents the test results of auger-cast model piles installed with expansive mortar in laboratory compacted weathered soil. The model piles were installed in a calibration chamber with a variation in the amount of expansive agent, the injection process and the chamber pressure. It was observed that the pile shaft resistance increases with the increased amount of expansive agent, and also increases when mortar is pressure injected. The shaft resistance increased up to 24% for the pile installed only with expansive mortar and increased up to 56% for the pile installed with the pressurized injection of expansive mortar, compared with that of piles with plain mortar.

  • PDF

Carbonation Treatment of EAF Slag for Using Aggregate of Concrete (EAF-Slag의 콘크리트용(用) 골재(骨材)로의 활용(活用)을 위한 탄산화(炭酸化) 처리(處理) 연구(硏究))

  • Yoo, Kwang-Suk;Ahn, Ji-Whan;Lee, Kyung-Hoon
    • Resources Recycling
    • /
    • v.18 no.3
    • /
    • pp.36-41
    • /
    • 2009
  • The objectives of this study are focusing on the issue with efficiently recycling for EAF slag as construction material such as an aggregate of concrete. This study can be classified mainly into two categories: the first section is the carbonation treatment of Electric Arc Furnace(EAF)-slag for obtaining soundness as using aggregate of concrete. And the second section is the application of carbonated EAF-slag on the mortar test to evaluate the stability and mechanical property, which is compressive strength, according to the replacement of EAF-slag on the mortar. It was known that pH of EAF-Slagle according to carbonation time decreases drastically to 7 within several sec of carbonation, and a calcite is formed on the surface of EAF slag. The formation of calcite during the carbonation process of EAF slag lead to fill at pore in the texture of EAF-Slag surface, and than the porosity of EAF-slag decreases with carbonation process. In the mortar test, compressive strength, according to the replacement of EAF-Slag to sand on the mortar, the compressive strength of mortar increased as the 50% replacement ratio of EAF slag for sand was above 10% higher than that of reference mortar according to 50% replacement of EAF slag.

ESTIMATION OF CONCRETE STRENGTH AND QUANTIFICATION OF CONCRETE DETERIORATION BY X-RAY TECHNIQUE WITH CONTRAST MEDIUM (X선조영촬영에 의한 콘크리트강도의 추정과 콘크리트열화의 수치화)

  • Takeda, Mitsuhiro;Otsuka, Koji;Lee, Sang-Hun
    • 한국방재학회:학술대회논문집
    • /
    • 2008.02a
    • /
    • pp.41-44
    • /
    • 2008
  • The purposes of this study are to estimate thestrength of concrete and quantify the deterioration of concrete by a unique X-ray technique with a contrast medium. In order to estimate the strength of concrete, specimens with different water-cement ratios were fabricated using non-air-entrained concrete, air-entrained concrete and mortar to determine the relationship between their compressive strength and the transit dose obtained by the X-ray technique. Also, an experiment to quantify deterioration was carried out on specimens that were subjected to freezing and thawing action to different levels of dynamic elastic modulus. As a result of this experiment, estimation of the strength and relative dynamic elastic modulus of deteriorated mortar, concrete and air-entrained concrete was found feasible by measuring the transit dose by the X-ray technique.

  • PDF