• Title/Summary/Keyword: 모듈 구조

Search Result 2,200, Processing Time 0.031 seconds

Development of Compact and Lightweight Broadband Power Amplifier with HMIC Technology (HMIC 기술을 적용한 소형화 경량화 광대역 전력증폭기 개발)

  • Byun, Kisik;Choi, Jin-Young;Park, Jae Woo
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.19 no.11
    • /
    • pp.695-700
    • /
    • 2018
  • This paper presents the development of compact and lightweight broadband power amplifier module using HMIC (Hybrid Microwave Integrated Circuit) technology that could be high-density integration for many non-packaged microwave components into the small area of a high dielectric constant printed circuit board, such as a ceramic substrate, also using the special design and fabrication schemes for the structure of minimized electromagnetic interference to obtain the homogeneous electrical performance at the wideband frequency. The results confirmed that the small signal gain has a gain flatness of ${\pm}1.5dB$ within the range of 32 to 36 dB. In addition, the output power satisfied more than 30 dBm. The noise figure was measured within 7 dB, and OIP3 (Output Third Order Intercept Point) was more than 39 dBm. The fabricated broadband power amplifier satisfied the target specification required to electrically drive the high power amplifiers of jamming generators for electronic warfare, so the actual applicability to the system was verified. Future studies will be aimed at designing other similar microwave power amplifiers in the future.

Development of Safe Stove System using Sound Wave Fire Extinguisher (음파 소화기를 이용한 안전 스토브 시스템 개발)

  • Seo, Yunwon;Lee, Sukjae;Park, yungjoo;Kim, Kinam;Choi, Yongrae;Hwang, Hyungjun;Han, Seunghan;Shim, Dongha
    • Fire Science and Engineering
    • /
    • v.32 no.6
    • /
    • pp.34-39
    • /
    • 2018
  • In this paper, the architecture of a safe stove with an automatic fire suppression function using a sound wave fire extinguisher has been proposed and developed for the first time. A microcontroller connected to a fire sensor detects and suppresses a fire by driving a fire extinguisher. The sound wave fire extinguisher is composed of a speaker and collimator, and is driven by a driver module including an audio amplifier. The attenuation of the sound wave is reduced by preventing the sound diffusion with an enclosure surrounding a stove. The frequency of the sound wave is set to 50 Hz, and the sound pressure of 93 dBA is measured at the distance of 0.5 m. It takes maximum 8 and 15 seconds to suppress the flame from 7-cc and 14-cc flammable liquid, respectively, which corresponds to 24% and 42% of the natural extinguishing time. Since the proposed safe stove is non-toxic and leaves no residues over the conventional ones, it would combine with various home appliances to suppress early-stage fires and prevent fire expansion.

Development of Numerical Model for Simulating Remediation Efficiency Using Surfactant in a NAPL Contaminated Area (계면활성제에 의한 NAPL 오염의 정화효율 수치 모의를 위한 모델 개발)

  • Suk, Heejun;Son, Bongho;Park, Sungmin;Jeon, Byonghun
    • Clean Technology
    • /
    • v.25 no.3
    • /
    • pp.206-222
    • /
    • 2019
  • Recently, various multiphase flows have been developed, and among them some models have been commercialized. However, most of them have been developed based on a pressure-based approach; therefore, various numerical difficulties were involved inherently. Accordingly, in order to overcome these numerical difficulties, a multiphase flow model, MultiPhaSe flow (MPS), following a fractional-flow based approach was developed. In this study, by combining a contaminant transport module describing an enhanced dissolution effect of a surfactant with MPS, a MultiPhaSe flow and TranSport (MPSTS) model was developed. The developed model was verified using the analytical solution of Clement. The MPSTS model can simulate the process of surfactant enhanced aquifer remediation including interphase mass transfer and contaminant transport in multiphase flow by using the coupled particle tracking method and Lagrangian-Eulerian method. In this study, a surfactant was used in a non aqueous phase liquid (NAPL) contaminated area, and the effect of hydro-geological heterogeneity in the layered media on remediation efficiency was studied using the developed model. According to the numerical simulation, when hydraulic conductivity in a lower layer is 10 times, 20 times, and 50 times larger than that in an upper layer, the concentration of dissolved diesel in the lower layer is much higher than that in the upper layer because the surfactant moves faster along the lower layer owing to preferential flow; thus, the surfactant enhances dissolution of residual non aqueous phase liquid in the lower layer.

Transient Liquid Phase Sinter Bonding with Tin-Nickel Micro-sized Powders for EV Power Module Applications (주석-니켈 마이크로 분말을 이용한 EV 전력모듈용 천이액상 소결 접합)

  • Yoon, Jeong-Won;Jeong, So-Eun
    • Journal of the Microelectronics and Packaging Society
    • /
    • v.28 no.2
    • /
    • pp.71-79
    • /
    • 2021
  • In this study, we have successfully fabricated the Sn-Ni paste and evaluated the bonding properties for high-temperature endurable EV (Electric Vehicle) power module applications. From evaluating of the micro-structural changes in the TLPS (Transient Liquid Phase Sintering) joints with Sn and Ni contents in the Sn-Ni pastes, a lack of Ni powders and Ni particle agglomerations by Ni surplus were observed in the Sn-20Ni and Sn-50Ni joints (in wt.%), respectively. In contrast, relatively dense microstructures are observed in the Sn-30Ni and Sn-40Ni TLPS joints. From differential scanning calorimetry (DSC) thermal analysis results of the fabricated Sn-Ni paste and TLPS bonded joints, we confirmed that the complete reactions of Sn with Ni to form Ni-Sn intermetallic compounds (IMCs) at bonding temperatures occurred, and there is no remaining Sn in the joints after TLPS bonding. In addition, the interfacial reactions and IMC phase changes of the Sn-30Ni joints under various bonding temperatures were reported, and their mechanical shear strength were investigated. The TLPS bonded joints were mainly composed of residual Ni particles and Ni3Sn4 intermetallic phase. The average shear strength tended to increase with increasing bonding temperature. Our results indicated a high shear strength value of approximately 30 MPa at a bonding temperature of 270 ℃ and a bonding time of 30 min.

Investigation for flow characteristics of ice-harbor type fishway installed at mid-sized streams in Korea (국내 중소하천에 설치된 아이스하버 어도 내부 흐름 특성 규명)

  • Baek, Kyong Oh;Min, Byong Jo
    • Journal of Korea Water Resources Association
    • /
    • v.55 no.1
    • /
    • pp.33-42
    • /
    • 2022
  • In this study, flow patterns in the ice-harbor fishway were analyzed according to fluctuations of the upstream water level, an increase of weir interval, and the presence or absence of orifices using a three-dimensional commercial numerical model, Flow-3D. In order to prove the suitability of the numerical simulation results, the flow velocity and flow rate at the exit of the fishway were observed using a 3D ultrasonic velocimetry on an actual ice-harbor fishway installed downstream of the Daegok bridge in Gyeongan-Cheon. Four types of turbulence modules can be selected for the Flow-3D model. As a result of verification with observation data, the RNG model best described the flow characteristics in the ice-harbor fishway. The velocity structure in the fishway according to fluctuations of the upstream water level was simulated. The results showed that the plunging flow and the streaming flow were mixed at the lowest water level. When the water level increased about 10 cm or more from the lowest water level, the plunging flow disappeared in all pools and only the streaming flow occurred. Contrary to expectations, even when the water level is rose a little, the flow simply occurred mainly on the streaming flow. If the interval between the weirs is increased, both the plunging flow and the streaming flow are showed continued even if the water level rises. In addition, compared to the case where there are no orifices at the bottom of the weirs, the plunging flow tends to be generated in several pools. It is necessary to prevent blocking orifices through active management so that various flow patterns in the fishway can be generated in multiple pools.

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (1) - System Design of a Solar Powered UAV with 4.2m Wingspan - (한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (1) - 주익 4.2m 태양광 무인기 시스템 설계 -)

  • Jeong, Jaebaek;Kim, Doyoung;Kim, Taerim;Moon, Seokmin;Bae, Jae-Sung;Park, Sanghyuk
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.50 no.7
    • /
    • pp.471-478
    • /
    • 2022
  • This paper is about research and development of Korea Aerospace University's Solar-Powered UAV System that named of KAU-SPUAV, and describes the design process of the 4.2 m solar UAV that succeeded in a long flight of 32 hours and 19 minutes at June 2020. In order to improve the long-term flight performance of the KAU-SPUAV, For reduce drag, a circular cross-section of the fuselage was designed, and manufactured light and sturdy fuselage by applying a monocoque structure using a glass fiber composite material. In addition, a solar module optimized for the wing shape of a 4.2 m solar drone was constructed and arranged, and a propulsion system applied with the 23[in] × 23[in] propeller was constructed to improve charging and flight efficiency. The developed KAU-SPUAV consumes an average of 55W when cruising and can receive up to 165W of energy during the day, and its Long-term Endurance was verified through flight tests.

A low noise, wideband signal receiver for photoacoustic microscopy (광음향 현미경 영상을 위한 저잡음 광대역 수신 시스템)

  • Han, Wonkook;Moon, Ju-Young;Park, Sunghun;Chang, Jin Ho
    • The Journal of the Acoustical Society of Korea
    • /
    • v.41 no.5
    • /
    • pp.507-517
    • /
    • 2022
  • The PhotoAcoustic Microscopy (PAM) has been proved to be a useful tool for biological and medical applications due to its high spatial and contrast resolution. PAM is based on transmission of laser pulses and reception of PA signals. Since the strength of PA signals is generally low, not only are high-performance optical and acoustic modules required, but high-performance electronics for imaging are also particularly needed for high-quality PAM imaging. Most PAM systems are implemented with a combination of several pieces of equipment commercially available to receive, amplify, enhance, and digitize PA signals. To this end, PAM systems are inevitably bulky and not optimal because general purpose equipment is used. This paper reports a PA signal receiving system recently developed to attain the capability of improved Signal to Noise Ratio (SNR) and Contrast to Noise Ratio (CNR) of PAM images; the main module of this system is a low noise, wideband signal receiver that consists of two low-noise amplifiers, two variable gain amplifiers, analog filters, an Analog to Digital Converter (ADC), and control logic. From phantom imaging experiments, it was found that the developed system can improve SNR by 6.7 dB and CNR by 3 dB, compared to a combination of several pieces of commercially available equipment.

Appropriate Technology and Field Application of Non-powered Water Purification System Using Nanofiber Membrane (나노섬유 멤브레인 기반 무동력 정수 시스템의 적정기술 및 현장 적용)

  • Lee, Jin;Yun, Byeong Gweon;Han, Kyoung Gu;Lee, Seung Hoon;Kim, Cheol Hyeon;Kim, Chan;Lee, Yunho;Lee, Dongwhi;Lee, Seunghyeok;Kim, Kyoung-Woong
    • Journal of Appropriate Technology
    • /
    • v.7 no.1
    • /
    • pp.72-81
    • /
    • 2021
  • Gravity-driven membrane (GDM) filtration system based on the nanofiber membrane was investigated. This system can be operated with little energy demand due to a gravitational pressure-driven filtration and biological fouling control strategy. Moreover, the optimal module configuration based on the high permeance of nanofiber membrane can provide a significantly high water productivity. In order to evaluate its applicability potential, the pilot-scale (3000-5000 L/day) systems with nanofiber membranes were operated in developing countries (Kiribati and Tuvalu). Our results showed that the 14-92 L/(m2×h) of the permeate flux was determined indicating a stabilized water productivity. In addition, the permeate water indicated a high removal rate (more than 99.99%) of turbidity and bacteria. Consequently, the system can provide a stabilized water production with safe permeate water quality during long-term operation. These findings exemplify an effective approach to decentralized drinking water treatment for developing countries.

SNIPE Mission for Space Weather Research (우주날씨 관측을 위한 큐브위성 도요샛 임무)

  • Lee, Jaejin;Soh, Jongdae;Park, Jaehung;Yang, Tae-Yong;Song, Ho Sub;Hwang, Junga;Kwak, Young-Sil;Park, Won-Kee
    • Journal of Space Technology and Applications
    • /
    • v.2 no.2
    • /
    • pp.104-120
    • /
    • 2022
  • The Small Scale magNetospheric and Ionospheric Plasma Experiment (SNIPE)'s scientific goal is to observe spatial and temporal variations of the micro-scale plasma structures on the topside ionosphere. The four 6U CubeSats (~10 kg) will be launched into a polar orbit at ~500 km. The distances of each satellite will be controlled from 10 km to more than ~1,000 km by the formation flying algorithm. The SNIPE mission is equipped with identical scientific instruments, Solid-State Telescopes(SST), Magnetometers(Mag), and Langmuir Probes(LP). All the payloads have a high temporal resolution (sampling rates of about 10 Hz). Iridium communication modules provide an opportunity to upload emergency commands to change operational modes when geomagnetic storms occur. SNIPE's observations of the dimensions, occurrence rates, amplitudes, and spatiotemporal evolution of polar cap patches, field-aligned currents (FAC), radiation belt microbursts, and equatorial and mid-latitude plasma blobs and bubbles will determine their significance to the solar wind-magnetosphere-ionosphere interaction and quantify their impact on space weather. The formation flying CubeSat constellation, the SNIPE mission, will be launched by Soyuz-2 at Baikonur Cosmodrome in 2023.

Development of Digital Streamer System for Ultra-high-resolution Seismic Survey (초고해상 탄성파 탐사를 위한 디지털 스트리머 시스템 개발)

  • Shin, Jungkyun;Ha, Jiho;Yoon, Seongwoong;Im, Taesung;Im, Gwansung
    • Geophysics and Geophysical Exploration
    • /
    • v.25 no.3
    • /
    • pp.129-139
    • /
    • 2022
  • Analog-based streamers for ultra-high-resolution seismic surveys are capable of additional noise ingress in water, but the specifications cannot be expanded through interconnections. Foreign-produced digital streamers have been introduced and used primarily at domestic research institutes; however, the cost is high and smooth maintenance is challenging. This study investigates the localization of ultra-high-resolution digital streamers capable of high-resolution imaging of a geological structure. A digital streamer capable of 24-bit, 10 kHz digital sampling of up to 64 channel data was developed through research and development. Various quantitative specifications of the system were designed and developed close to the benchmark model, Geometrics' GeoEel streamer, and the number of modules that make up the system was drastically reduced, reducing development costs and making it easier to use. The field applicability of the developed streamer system was evaluated in an in situ experiment conducted in the waters around the Port of Yeong-il Bay in Pohang in April 2022.