DOI QR코드

DOI QR Code

A Study on the Development of Low-Altitude and Long-Endurance Solar-Powered UAV from Korea Aerospace University (1) - System Design of a Solar Powered UAV with 4.2m Wingspan -

한국항공대학교 저고도 장기체공 태양광 무인기 개발에 관한 연구 (1) - 주익 4.2m 태양광 무인기 시스템 설계 -

  • Jeong, Jaebaek (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Doyoung (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Kim, Taerim (Dept. of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Moon, Seokmin (Aeronautics Research Directorate, Korea Aerospace Research Institute) ;
  • Bae, Jae-Sung (School of Aerospace and Mechanical Engineering, Korea Aerospace University) ;
  • Park, Sanghyuk (School of Aerospace and Mechanical Engineering, Korea Aerospace University)
  • Received : 2022.01.24
  • Accepted : 2022.06.02
  • Published : 2022.07.01

Abstract

This paper is about research and development of Korea Aerospace University's Solar-Powered UAV System that named of KAU-SPUAV, and describes the design process of the 4.2 m solar UAV that succeeded in a long flight of 32 hours and 19 minutes at June 2020. In order to improve the long-term flight performance of the KAU-SPUAV, For reduce drag, a circular cross-section of the fuselage was designed, and manufactured light and sturdy fuselage by applying a monocoque structure using a glass fiber composite material. In addition, a solar module optimized for the wing shape of a 4.2 m solar drone was constructed and arranged, and a propulsion system applied with the 23[in] × 23[in] propeller was constructed to improve charging and flight efficiency. The developed KAU-SPUAV consumes an average of 55W when cruising and can receive up to 165W of energy during the day, and its Long-term Endurance was verified through flight tests.

본 논문은 한국항공대학교에서 연구 및 개발한 태양광 무인기 KAU-SPUAV에 관한 내용으로, 2020년 6월 32시간 19분 장기체공 비행에 성공한 주익 4.2m 태양광 무인기의 설계 과정에 관하여 기술하였다. 태양광 무인기의 장기체공 능력을 향상시키기 위해 항력을 줄이기 위한 원형 단면의 동체를 설계하였고, 유리섬유 복합재를 사용한 모노코크 구조를 적용하여 가볍고 튼튼한 동체를 제작하였다. 또한 4.2m 태양광 무인기의 날개 형상에 최적화된 태양광 모듈을 구성하여 배열하였고, 23[in] × 23[in] 프로펠러를 적용한 추진시스템을 구성하여 충전 및 비행 효율을 향상시켰다. 개발된 태양광 무인기는 순항할 때 평균 55W를 소비하고, 주간에 최대 165W 에너지를 공급받을 수 있으며 비행실험을 통해 장기체공 성능을 검증하였다.

Keywords

Acknowledgement

이 논문은 2020년도 한국항공대학교 교비지원 연구비에 의하여 지원된 연구의 결과이며, 2022년도 산업통상자원부 및 산업기술평가관리원(KEIT) 연구비 지원에 의한 연구임("20003471").

References

  1. Noll, T. E., Brown, J. M., Perez-Davis, M. E., Ishmael, S. D., Tiffany, G. C. and Gaier, M., Investigation of the Helios Prototype Aircraft Mishap. Tech. Rep., NASA Langley Research Center, 2004.
  2. Mark, H., "Tech giants race to build orbital internet," IEEE Spectrum, Vol. 55, No. 6, 2018, pp. 10~11. https://doi.org/10.1109/MSPEC.2018.8362213
  3. Zhu, X., Guo, Z. and Hou, Z., "Solar-powered airplanes: A historical perspective and future challenges," Progress in Aerospace Sciences, Vol. 71, 2014, pp. 36~53. https://doi.org/10.1016/j.paerosci.2014.06.003
  4. Hwang, S. J., Kim, S. G. and Lee, Y. G., "Developing High Altitude Long Endurance (HALE) Solar-powered Unmanned Aerial Vehicle (UAV)," Journal of Aerospace System Engineering, Vol. 10, No. 1, 2016, pp. 59~65. https://doi.org/10.20910/JASE.2016.10.1.59
  5. Bae, J. S., Park, S. H., Lee, H. C. and Kim, J. H., "Development and Flight Test of KAU Solar Powered UAV," Proceeding of The Korean Society for Aeronautical and Space Sciences Spring Conference, April 2018, pp. 420~421.
  6. Nicolai, L. M., Fundamentals of aircraft design, Nicolai, 1975.
  7. Moon, S. M., Kim, Y. R., Pyeon, B. D., Bae, J. S. and Park, S. H., "A study on flight performance improvement of low altitude and long endurance solar powered UAV," Proceeding of The Society for Aerospace System Engineering Fall Conference, November 2019, FB6-1.
  8. Federal Aviation Administration, and United States, Federal Aviation Administration, Pilot's Handbook of Aeronautical Knowledge, Skyhorse Publishing Inc., 2009.