• Title/Summary/Keyword: 모두 벡터

Search Result 308, Processing Time 0.03 seconds

Face Recognition using Effective Characteristical vectors and Edge Image Extraction Based on Haar Wavelet (Haar 웨이블릿에 기반한 에지검출과 효율적인 특징벡터을 이용한 얼굴 인식)

  • Choi, Gwang-Mi;Jung, Gug-Yeoung;Jung, Chai-Yeoung
    • Annual Conference of KIPS
    • /
    • 2003.11a
    • /
    • pp.575-578
    • /
    • 2003
  • 본 논문에서는 얼굴영역을 검출하기위해 얼굴 피부색을 보다 효과적으로 모델링하기 위한 방법으로 피부색 특성을 고려하여 자기 성분을 제거한 Red, Blue, Green 채널을 모두 사용하는 Hue, Cb, Cg의 Multi-Channel 피부색 모델을 사용한다. 얼굴영역을 분리한 영상에 Haar 웨이블릿을 이용한 에지영상 추출과 얼굴영역의 특징벡터를 구하기 위하여 26개의 특징벡터를 사용한 효율적인 고차 국소 자동 상관함수를 사용하였다. 계산된 특징벡터는 BP 신경망의 학습을 통하여 얼굴인식을 위한 데이터로 사용된다. 시뮬레이션을 통해 제안된 알고리즘에 의한 인식률향상과 속도 향상을 입증한다.

  • PDF

H8 Inverter System for Driving PMSM applying Model Predictive Contorol Method for Common-Mode Voltage Reduction (공통모드전압 저감을 위한 모델예측제어기법을 적용한 PMSM 구동용 H8 인버터 시스템)

  • Choo, Kyung-Min;Kim, Jun-Chan;Jung, Won-Sang;Won, Chung-yuen
    • Proceedings of the KIPE Conference
    • /
    • 2018.11a
    • /
    • pp.185-186
    • /
    • 2018
  • 모델 예측전류제어 과정에서 공통모드전압을 저감 하기 위한 기존연구방안들이 제시되어 왔지만 두 상의 스위치 함수가 변동하는 데드 타임 구간이나 영 전압벡터 두 가지를 모두 저감시키지는 못하였다. 본 논문에서 제안한 모델예측전류제어는 영 전압벡터와 데드 타임에서의 공통모드전압을 고려하여 H8 인버터시스템에서 공통모드전압을 저감하였을 뿐만 아니라 영 전압 벡터 사용으로 인한 THD도 개선하였다. 모델예측전류제어를 적용한 H8 인버터 시스템의 공통모드전압의 저감과 출력전류 THD 개선을 시뮬레이션을 통해 증명하였다.

  • PDF

Feature-Vector Normalization for SVM-based Music Genre Classification (SVM에 기반한 음악 장르 분류를 위한 특징벡터 정규화 방법)

  • Lim, Shin-Cheol;Jang, Sei-Jin;Lee, Seok-Pil;Kim, Moo-Young
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.48 no.5
    • /
    • pp.31-36
    • /
    • 2011
  • In this paper, Mel-Frequency Cepstral Coefficient (MFCC), Decorrelated Filter Bank (DFB), Octave-based Spectral Contrast (OSC), Zero-Crossing Rate (ZCR), and Spectral Contract/Roll-Off are combined as a set of multiple feature-vectors for the music genre classification system based on the Support Vector Machine (SVM) classifier. In the conventional system, feature vectors for the entire genre classes are normalized for the SVM model training and classification. However, in this paper, selected feature vectors that are compared based on the One-Against-One (OAO) SVM classifier are only used for normalization. Using OSC as a single feature-vector and the multiple feature-vectors, we obtain the genre classification rates of 60.8% and 77.4%, respectively, with the conventional normalization method. Using the proposed normalization method, we obtain the increased classification rates by 8.2% and 3.3% for OSC and the multiple feature-vectors, respectively.

The Hardware Design of Adaptive Search Range Assignment for High Performance HEVC Encoder (고성능 HEVC 부호기를 위한 적응적 탐색영역 할당 하드웨어 설계)

  • Hwang, Inhan;Ryoo, Kwangki
    • Proceedings of the Korean Institute of Information and Commucation Sciences Conference
    • /
    • 2017.10a
    • /
    • pp.159-161
    • /
    • 2017
  • In this paper, we propose an adaptive search range allocation algorithm for high-performance HEVC encoder and a hardware architecture suitable for the proposed algorithm. In order to improve the prediction performance, the existing motion vector is configured with the motion vectors of the neighboring blocks as prediction vector candidates, and a search range of a predetermined size is allocated using one motion vector having a minimum difference from the current motion vector. The proposed algorithm reduces the computation time by reducing the size of the search range by assigning the size of the search range to the rectangle and octagon type according to the structure of the motion vectors for the surrounding four blocks. Moreover, by using all four motion vectors, it is possible to predict more precisely. By realizing it in a form suitable for hardware, hardware area and computation time are effectively reduced.

  • PDF

A Study on Performance Improvement of Adaptive SLC System Using Eigenanalysis Method and Comparing with RLS Method (Eigenanalysis 방식의 적응 SLC(sidelobe canceller) 시스템의 적용에 따른 성능향상 및 RLS 방식과외 비교에 관한 연구)

  • Jung, Sin-Chul;Kim, Se-Yon;Lee, Byung-Seub
    • Journal of Advanced Navigation Technology
    • /
    • v.5 no.2
    • /
    • pp.111-122
    • /
    • 2001
  • In this paper, we study the performance of eigencanceller which use a eigenvector and eigenvalue in order to update a weighter vector. Eigencanceller can suppress directional interferences and noise effectively while maintaining specified beam pattern constraints. The constraints and optimal weight vector of eigencanceller vary by using interference and noise or desired signal, interference signal and noise as array input signal. From the analysis results in the steady state, We show that weight vectors in each case are simplified the form of projection equation that belongs to desired subspace orthogonal to interference subspace and eigencanceller has the better performance than RLS method through mathematical analysis and simulation.

  • PDF

The Facial Area Extraction Using Multi-Channel Skin Color Model and The Facial Recognition Using Efficient Feature Vectors (Multi-Channel 피부색 모델을 이용한 얼굴영역추출과 효율적인 특징벡터를 이용한 얼굴 인식)

  • Choi Gwang-Mi;Kim Hyeong-Gyun
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.9 no.7
    • /
    • pp.1513-1517
    • /
    • 2005
  • In this paper, I make use of a Multi-Channel skin color model with Hue, Cb, Cg using Red, Blue, Green channel altogether which remove bight component as being consider the characteristics of skin color to do modeling more effective to a facial skin color for extracting a facial area. 1 used efficient HOLA(Higher order local autocorrelation function) using 26 feature vectors to obtain both feature vectors of a facial area and the edge image extraction using Harr wavelet in image which split a facial area. Calculated feature vectors are used of date for the facial recognition through learning of neural network It demonstrate improvement in both the recognition rate and speed by proposed algorithm through simulation.

An Effective Sentence Similarity Measure Method Based FAQ System Using Self-Attentive Sentence Embedding (Self-Attention 기반의 문장 임베딩을 이용한 효과적인 문장 유사도 기법 기반의 FAQ 시스템)

  • Kim, Bosung;Kim, Juae;Lee, Jeong-Eom;Kim, Seona;Ko, Youngjoong;Seo, Jungyun
    • Annual Conference on Human and Language Technology
    • /
    • 2018.10a
    • /
    • pp.361-363
    • /
    • 2018
  • FAQ 시스템은 주어진 질문과 가장 유사한 질의를 찾아 이에 대한 답을 제공하는 시스템이다. 질의 간의 유사도를 측정하기 위해 문장을 벡터로 표현하며 일반적으로 TFIDF, Okapi BM25와 같은 방법으로 계산한 단어 가중치 벡터를 이용하여 문장을 표현한다. 하지만 단어 가중치 벡터는 어휘적 정보를 표현하는데 유용한 반면 단어의 의미적인(semantic) 정보는 표현하기 어렵다. 본 논문에서는 이를 보완하고자 딥러닝을 이용한 문장 임베딩을 구축하고 단어 가중치 벡터와 문장 임베딩을 조합한 문장 유사도 계산 모델을 제안한다. 또한 문장 임베딩 구현 시 self-attention 기법을 적용하여 문장 내 중요한 부분에 가중치를 주었다. 실험 결과 제안하는 유사도 계산 모델은 비교 모델에 비해 모두 높은 성능을 보였고 self-attention을 적용한 실험에서는 추가적인 성능 향상이 있었다.

  • PDF

Generation of Korean Intonation using Vector Quantization (벡터 양자화를 이용한 한국어 억양 곡선 생성)

  • An, Hye-Sun;Kim, Hyung-Soon
    • Annual Conference on Human and Language Technology
    • /
    • 2001.10d
    • /
    • pp.209-212
    • /
    • 2001
  • 본 논문에서는 text-to-speech 시스템에서 사용할 억양 모델을 위해 벡터 양자화(vector quantization) 방식을 이용한다. 어절 경계강도(break index)는 세단계로 분류하였고, CART(Classification And Regression Tree)를 사용하여 어절 경계강도의 예측 규칙을 생성하였다. 예측된 어절 경계강도를 바탕으로 운율구를 예측하였으며 운율구는 다섯 개의 억양 패턴으로 분류하였다. 하나의 운율구는 정점(peak)의 시간축, 주파수축 값과 이를 기준으로 한 앞, 뒤 기울기를 추출하여 네 개의 파라미터로 단순화하였다. 운율구에 대해서 먼저 운율구가 문장의 끝일 경우와 아닐 경우로 분류하고, 억양 패턴 다섯 개로 분류하여. 모두 10개의 운율구 set으로 나누었다. 그리고 네 개의 파라미터를 가지고 있는 운율구의 억양 패턴을 벡터 양자화 방식을 이용하여 분류(clusteing)하였다 운율의 변화가 두드러지는 조사와 어미는 12 point의 기본주파수 값을 추출하고 벡터 양자화하였다. 운율구와 조사 어미의 codebook index는 문장에 대한 특징 변수 값을 추출하고 CART를 사용하여 예측하였다. 합성할 때에는 입력 tort에 대해서 운율구의 억양 파라미터를 추정한 다음, 조사와 어미의 12 point 기본주파수 값을 추정하여 전체 억양 곡선을 생성하였고 본 연구실에서 제작한 음성합성기를 통해 합성하였다.

  • PDF

The analysis of EU carbon trading and energy prices using vector error correction model (벡터오차수정모형을 이용한 유럽 탄소배출권가격 분석)

  • Bu, Gi-Duck;Jeong, Ki-Ho
    • Journal of the Korean Data and Information Science Society
    • /
    • v.22 no.3
    • /
    • pp.401-412
    • /
    • 2011
  • This study uses a vector error correction model to analyze the daily time series data of the spot price of EUA (European Union Allowance). As endogenous variables, five variables are considered for the analysis, including prices of crude oil, natural gas, electricity and coal in addition to carbon price. Data period is Phase 2 period (April 21, 2008 to March 31, 2010) to avoid Phase 1 period (2005-2007) where the EUA prices were distorted. Unit-root and cointegration test results reveal that all variables have a unit root and cointegration vectors exist, so a vector error correction model is adopted instead of a vector autoregressive model.

For new Duality Structure and its Application in the NCV-|v1 > Library (NCV-|v1 >라이브러리의 새로운 쌍대 구조와 응용)

  • Park, Dong-Young;Jeong, Yeon-Man
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.11 no.2
    • /
    • pp.165-170
    • /
    • 2016
  • The characteristic and application of a new duality structure in the $NCV-{\mid}v_1$ > library is studied in this paper. All unitary operations on arbitrarily many qudit's n can be expressed as composition of one- and two-qudit $NCV-{\mid}v_1$ > libraries if their state vectors are eigenvectors. This research provides an extended realization from Barenco's many bits n operator(U(2n)) which is applicable to only all positive polarity statevectors to whole polarity ones. At the control gate synthesis of a unitary operator, such an enhanced expansion is possible due to their symmetric duality property in the case of using both $NCV-{\mid}v_1$ > and $NCV^{\dag}-{\mid}v_1$ > libraries which make the AND predominantly dependent cascade synthesis possible.