• 제목/요약/키워드: 명제에 대한 학생들의 이해

검색결과 16건 처리시간 0.023초

실제적 함의에 대한 학생들의 이해 (Students' understandings of material implication)

  • 박달원
    • 한국학교수학회논문집
    • /
    • 제17권4호
    • /
    • pp.805-816
    • /
    • 2014
  • 본 연구에서는 형식적 함의에 대한 역사적 발달과정을 살펴보고 형식적 함의에 대하여 대학생들이 어떻게 이해하는지를 분석하였다. 또한 고등학생들과 예비대학생들을 대상으로 카드모임에 대한 실제적 함의에 대하여 조사한 결과 주어진 카드 모음에서 성립하는 패턴을 명제 $p{\rightarrow}q$로 나타낼 때에는 명제 $p{\rightarrow}q$${\sim}p{\vee}q$와 동치인 명제로 이해하는 학생들이 가장 많았지만 명제 $p{\rightarrow}q$가 성립하는 카드를 모으는 과정에서는 조건명제 $p{\rightarrow}q$$p{\wedge}q$와 동치인 명제로 이해하는 학생들이 가장 많은 것으로 조사되었다.

  • PDF

대학 신입생들의 명제에 대한 이해 (First-year Undergraduate Students' Understanding about Statements)

  • 김영옥
    • 대한수학교육학회지:학교수학
    • /
    • 제11권2호
    • /
    • pp.261-280
    • /
    • 2009
  • 본 연구는 현재 우리나라 고등학교 1학년 명제단원의 내용 체계가 수학적 논리사고를 함양하기 위한 기초 준비로는 너무 약화되어 있어, 그러한 명제 교육을 받고 대학에 진학한 신입생들이 명제와 관련된 개념 이해에서 많은 어려움을 보일 것이라는 가정 하에서 진행되었다. 이에 본 연구는 제 7차 수학과 교육과정에 따른 명제교육을 받고 지방 중위권 대학에 입학한 이공계 신입생들의 명제에 대한 이해 정도를 알아보기 위해, 대학 기초 수학 학습에서 요구되는 기본 명제 개념들로 이루어진 문제를 적용하고, 그 문제 해결과정에서 보이는 신입생들의 오류와 특징들을 조사, 분석하였다. 본 연구의 결과는 이공계 신입생들의 명제 관련 개념들에 대한 이해 실태를 보고함으로써, 대학 수학 교육에서 수학적 논리 기초 개념들에 대한 지도를 어느 수준까지 해야 할 것인가에 대한 시사점을 제공하는데 그 의의가 있다.

  • PDF

학생들이 증명학습에서 겪는 어려움 (Student's difficulties in the teaching and learning of proof)

  • 김창일;이춘분
    • 한국수학사학회지
    • /
    • 제21권3호
    • /
    • pp.143-156
    • /
    • 2008
  • 본 연구에서는 중학교 2학년 도형의 성질 단원의 증명학습을 세 단계로 나누어 설문을 통하여 학생들이 증명학습에서 겪는 어려움을 조사하였다. 설문 분석 결과 학생들은 증명학습에서 증명의 의미를 이해하지 못해 명제의 참을 판단하는 정도의 간단한 추론도 하지 못할 뿐만 아니라 제시된 증명을 읽고 그것이 증명하려는 명제의 가정과 결론을 파악하지 못한다. 이는 학생들이 명제의 가정과 결론의 의미와 역할을 명확히 이해하지 못하는데서 비롯된다. 따라서 학생들에게 명제의 가정과 결론의 의미와 역할에 대한 지도에 좀 더 역점을 두는것이 필요하다.

  • PDF

조건추론에 대한 학생들의 이해 (Conditional Inferences in Students)

  • 박달원
    • 한국학교수학회논문집
    • /
    • 제12권3호
    • /
    • pp.307-317
    • /
    • 2009
  • 가정이 거짓인 조건명제가 참임을 설명하는 단서조항의 유무에 따라 조건명제와 조건추론에 대한 학생들의 바른 판정에는 유의미한 차이가 있고 실생활과 관련된 조건 명제와 형식적인 조건명제에 대한 중학생들의 진위판정에도 유의미한 차이가 있었지만 대학생들의 경우에는 유의미한 차이가 없는 것으로 조사되었다. 또한 형식적인 조건명제와 조건추론에 대한 학생들의 바른 판정 간에는 비교적 높은 상관관계가 있는 것으로 분석 되었다.

  • PDF

수학적 귀납법에 대한 학생들의 이해에 관하여 (On the Students' Understanding of Mathematical Induction)

  • 홍진곤;김윤경
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제18권1호
    • /
    • pp.123-135
    • /
    • 2008
  • 본 연구에서는 고등학교 과정에서 다루어지는 수학적 귀납법 증명의 대표적인 예제들을 이해하고 증명하는데 필요한 스키마를 분석하고, 그에 대한 학생들의 구성 여부를 조사하였다. 함수 스키마와 명제치 함수 스키마의 구성은 함의치 함수 스키마와 긍정 논리식 스키마의 구성에 선행하며 함의치 함수 스키마와 긍정 논리식 스키마는 수학적 귀납법 스키마를 위해 통합적으로 조절되어야 한다는 점도 확인하였다. 이를 바탕으로 하여 수학적 귀납법에 대한 학생들의 이해 수준은 $1{\sim}4$ 수준으로 설정될 수 있었다. 또한 이러한 이해 수준과 관련하여 수학적 귀납법을 학습하면서 겪는 학생들의 인지적 어려움이 분석되었다.

  • PDF

문자식을 포함한 대수 증명에 대한 중학교 3학년 학생들의 이해 연구 - 문맥과 문자식, 어느 것을 보는가 - (Understanding of Algebraic Proofs Including Literal Expressions: Expressions or Contexts?)

  • 장혜원;강정기
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제24권3호
    • /
    • pp.359-374
    • /
    • 2014
  • 증명 학습과 관련하여 학생들이 경험하는 어려움과 오류는 수학교육계의 난제라 할 만하다. 증명에 대한 형식적 학습이 이루어지는 기하 영역에서뿐만 아니라 대수 증명에 대해서도 문자식의 처리나 일반성의 파악과 관련하여 어려움의 요소는 도처에서 발견된다. 본 연구에서는 두 3의 배수의 합은 3의 배수라는 명제에 대한 문자식을 포함한 증명에서 학생들이 증명의 문맥을 적절하게 이해하는가를 알아보는 데 초점을 둔다. 중학교 3학년 학생 24명을 대상으로 하여 증명 과정에 문자식이 포함되며 결론 부분은 빈 칸으로 생략되어 있는 증명을 제시하고 그 증명이 어떤 명제에 대한 증명인지 알아보도록 한 결과 반 이상의 학생이 문자식 자체에 근거하여 부적절한 응답을 하였다. 나아가 그 중 임의 추출한 세 명을 개별 면담함으로써 사고 특징을 조사하였다. 대수 증명을 식의 성립을 보이는 것으로 간주하는 증명관, 증명 수행과 이해에서의 문자식 해석의 괴리 등을 비롯한 사고 특징을 파악하고 그로부터 교육적 시사점을 도출하였다.

  • PDF

예비교사들을 대상으로 한 증명활동과 반례생성 수행결과 분석 : 수열의 극한을 중심으로 (Preservice Teachers' Writing Performance Producing Proofs and Counterexamples about Limit of Sequence)

  • 이정곤;류희찬
    • 대한수학교육학회지:수학교육학연구
    • /
    • 제21권4호
    • /
    • pp.379-398
    • /
    • 2011
  • 수학교육에서 증명과 반박은 명제가 왜 참인지 혹은 거짓인지를 판별하게 해주고 거짓으로 판명된 명제를 참인 명제로 정교화하는 과정에서 중요한 요소가 된다. 그렇기에 증명활동과 반례생성 두 가지를 함께 학습하는 것은 수학을 배우는 학생들에게 주어진 명제에 내포되어 있고 함축되어 있는 의미에 대한 깊은 통찰력과 명확한 이해를 제공해 줄 수 있다. 최근 많은 논문을 통해 학생들이 수학적 증명에 어려움을 겪고 있다는 증거가 나타나고 있다. 그러나 해당 연구의 대부분은 예비교사들이 수열의 극한 부분에 대하여 증명과 반례를 생산해 내는 능력에만 초점을 맞추고 있다. 따라서 본 연구에서는 예비교사들을 대상으로 하여 수열의 극한 부분에 대한 수행결과 분석을 통하여 증명활동과 반례생성에 대한 능력정도와 접근 방법 등을 알아보고자 한다. 본 연구의 목적은 예비교사들이 반례와 증명을 생성하는 것에 대한 조사에 공헌하는 것이며 예비교사들의 증명과 반례생성 능력 그리고 수학 개념들에 대한 이해의 정도를 식별하고 확인하는 것이다. 또한, 연구를 통하여 참가자들이 주어진 명제들에 대한 답을 작성하는 것에 어려움을 겪는다는 것을 알게 되었고 이를 바탕으로 증명과 반례를 가르치고 배우는 것에 더욱 노력을 기울여야만 한다는 것을 알 수 있었다. 덧붙여, 이 연구의 분석을 통하여 현행 커리큘럼과 교육 방법에 대하여 통찰력을 제공하게 될 수 있을 것이고 예비교사들의 수학과정 학습을 향상시킬 수 있는 방향을 제시한다는 교육적 시사점을 얻을 수 있을 것이다.

  • PDF

대학수학에서 귀납적 증명에 대한 연습

  • 김병무
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제18권2호
    • /
    • pp.109-124
    • /
    • 2004
  • 대학수학에서 수학적귀납법의 원리를 소개하고 풍부한 예를 통해 이해를 돕는다. 특별히 교양수학을 수강하는 1학년 학생 수준에 맞게 매스매티카 프로그램을 이용하여 구체적인 예를 갖고 한단계 한단계 접근하여 수학적귀납법의 증명을 연습할 기회를 준다. 증명을 단계적으로 하는 것을 연습하여 학생들은 논리적인 사고능력을 개발하고 새로운 명제를 발견할 수 있는 기회를 맞보게 한다. 물론, 증명 연습은 1학년 신입생에게는 쉽지 않으나 여러 명제에 대해 연습을 하는 것은 수학적, 논리적 사고 능력을 개발하고 증명문제에 대한 인식을 바꾸는데 매우 중요한 역할을 할 것이다.

  • PDF

수학 교사의 증명과 증명 지도에 대한 인식 - 대학원에 재학 중인 교사를 중심으로 - (Mathematics Teachers' Conceptions of Proof and Proof-Instruction)

  • 나귀수
    • 한국수학교육학회지시리즈E:수학교육논문집
    • /
    • 제28권4호
    • /
    • pp.513-528
    • /
    • 2014
  • 본 연구에서는 대학원에 재학 중인 중 고등학교 수학 교사 36명을 대상으로 증명 및 증명 지도에 대한 인식을 조사하였다. 본 연구의 결과, 대부분의 교사들이 증명의 정당화 역할은 잘 인식하지만, 설명(확인), 이해, 발견, 의사소통, 체계화, 수학적 표현의 사용 등으로서의 역할은 미흡하게 인식하며, 많은 교사들이 증명의 조건에 대해 혼란스러운 개념을 가지고 있는 것으로 나타났다. 증명 지도의 이유에 대해서는 논리적 사고력 함양, 수학적 사고력 신장, 명제의 이해, 참인 명제의 확인, 수학의 본질 이해, 수학 지식 증가, 수학적 표현 증진, 수학의 즐거움 경험, 의사소통, 엄밀성 추구, 연계성 추구 등의 다양한 의견을 제시하였다. 증명 지도의 수행과 관련하여, 상당수의 교사들이 실제 증명 지도가 미흡하게 이루어지고 있다고 응답했으며, 학생들의 두려움과 흥미 부족, 증명 지도 시간 부족, 학생 사고수준 미흡, 지도 방식 미흡 등을 증명 지도의 제약 조건으로 언급하였다. 한편, 본 연구에서는 '증명'이라는 수학적 용어가 누락된 2009 개정 수학과 교육과정의 성취기준을 살펴보았다. '${\cdots}$를 이해하고 설명할 수 있다'는 성취기준은 증명 교수-학습과 관련하여 적절하지 않으며, 특히 논리적 추론이나 정당화 과정을 증명과 동일시하는 미흡한 개념을 가지고 있는 교사들에게 더욱 큰 혼란을 줄 위험이 있음을 확인하였다.

내가 중학교 기하 영역의 교사용 지도서를 다시 쓴다면?

  • 최수일;김동원
    • 한국수학교육학회:학술대회논문집
    • /
    • 한국수학교육학회 2008년도 제40회 전국수학교육연구대회 프로시딩
    • /
    • pp.17-28
    • /
    • 2008
  • 이 논문은 중학교 기하 영역의 수업에 대한 학생들의 성취도가 낮은 것을 관찰하고, 그에 대한 고민으로 교육과정을 분석하고, 수학교육의 질적 접근을 위한 교수 실험을 통해 실제 중학교 과정에서 운용되는 논증기하 교육의 문제점과 그 대안을 탐색하고자 하였다. 본 연구에서는 교사가 반드시 갖춰야 할 지식으로 Shulman(1986)이 제시한 교과 내용 지식과 교수학적 내용 지식, 그리고 교육과정 관련 지식을 받아들였으며, 중학교 기하 영역에서 이런 지식을 갖추기 위해 교사가 폭넓은 고민을 하여 수업의 개선점을 찾는 과정을 보여주고 있다. 연구를 통해서 학생들에게 명제를 지도할 때 주의할 점과 학습자에게 증명을 하도록 제시하는 방법상의 문제점, 그리고 이등변삼각형의 지도에서의 그 증명이 갖는 의미를 잘 이해하여 학생들에 증명 학습에 진정한 도움이 될 수 있는 방향을 탐색하였다. 그리고 절차만을 학습시키는 현행 작도 수업을 개선하기 위한 여러 시도와 등변사다리꼴의 학습에서와 같이 학생들이 수학 용어를 되돌아보는 수업이 필요성을 탐색하여, 많은 교수 실험을 통한 교육과정의 바람직한 개정을 제안하였다.

  • PDF