• Title/Summary/Keyword: 메탄생성

Search Result 468, Processing Time 0.027 seconds

Influence of Soil and Air Temperature on the Diel Change of Methane Emission in a Korean Paddy Soil incorporated with Rice Straw (볏짚을 시용(施用)한 논토양(土壤)에서 토양온도(土壤溫度) 및 기온(氣溫)이 메탄배출(排出)의 일중변화(日中變化)에 미치는 영향(影響))

  • Shin, Yong-Kwang;Lee, Byong-Lyol;Suh, Jang-Sun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.28 no.3
    • /
    • pp.266-269
    • /
    • 1995
  • Methane emission was measured every two hours for a whole day at heading stage of rice plantsby using a closed static chamber installed in NPK(11-70-80 kg/ha) plot and NPK+rice straw(5 ton/ha) plots. The effect of air and soil temperature on methane emission was studied. In NPK plot the diel change of methane emission was synchronized better with soil temperature than air temperature because of abrupt rise of air temperature from 11 : 00 to 17 : 00 hours. In NPK+rice straw plot diel methane emission showed proportionally increased with increase of soil temperature except for times from 11 : 00~17 : 00 hours when air temperature was very high, but showed a closer relation with change of air temperature. It was suggested that the diel change of methane emission was closely related to that of air temperature where organic matter was abundant, while to that of soil temperature where organic matter was limited.

  • PDF

Recent Advances in the Development of Nickel Catalysts for Carbon Dioxide Methanation (이산화탄소 메탄화를 위한 니켈 촉매 기술 동향)

  • Jaewon Jang;Jungpil Kim
    • Applied Chemistry for Engineering
    • /
    • v.35 no.5
    • /
    • pp.361-371
    • /
    • 2024
  • This study reviews recent advancements in Ni-based catalysts for CO2 methanation, emphasizing high thermal stability and catalytic performance at elevated temperatures. Ni catalysts are preferred for their strong hydrogen adsorption, high activity, and methane selectivity. Strategies such as optimizing metal loading, using efficient supports, and introducing promoters enhance thermal stability by preventing sintering and carbon deposition. The produced methane serves as a valuable feedstock for synthetic fuels and chemicals, improving the economic feasibility of the CO2 methanation process. These findings underscore the importance of thermal stability in developing effective Ni catalysts for large-scale CO2 methanation.

Economic Evaluation of Two-step Biohydrogen/biomethane Production Process (이단계 바이오 수소/메탄 생산공정의 경제성 평가)

  • Oh, You-Kwan;Kim, Yu-Jin;Kim, Mi-Sun;Park, Sung-Hoon
    • Journal of Hydrogen and New Energy
    • /
    • v.17 no.1
    • /
    • pp.98-108
    • /
    • 2006
  • 본 연구에서는 이 단계 연속 바이오 수소/메탄 생산공정의 경제성을 조사하였다. 경제적 관점에서 다양한 수소 및 메탄 발효용 생물반응기를 비교 평가하였다. 이를 바탕으로 포도당으로부터 일 단계 수소발효를 위해 고온 trickling biofilter 반응기 (TBR, $100\;m^3$ 규모)를, 일 단계 반응의 부산물로 생성된 유기산과 알콜류의 이 단계 메탄전환을 위해 고온 upflow anaerobic sludge 반응기 (UASB; $700\;m^3$ 규모)를 선정하였다. 본 이 단계 공정의 수소생산 비용은 $$\;0.26/Nm^3$으로 계산되었고, 이는 고온 TBR 반응기만을 이용한 경우보다 약 30 % 낮았다. 이 단계 공정의 낮은 수소생산 비용은 높은 에너지 회수율과 낮은 슬러지 처리비용에 의한 것이었다. 생물학적 수소 생산공정의 경제성은 탄소원의 종류, 생물반응기의 형태 등 여러 인자에 의해 변경될 수 있으나, 본 연구결과는 향후 연구를 위한 유용한 기준으로 고려될 수 있다.

Metagenomics analysis of methane metabolisms in manure fertilized paddy soil (메타게놈 분석을 이용한 돈분뇨 처리에 의한 논토양에서 메탄대사에 미치는 영향 조사)

  • Nguyen, Son G.;Ho, Cuong Tu;Lee, Ji-Hoon;Unno, Tatsuya
    • Korean Journal of Microbiology
    • /
    • v.52 no.2
    • /
    • pp.157-165
    • /
    • 2016
  • Under flooded rice fields, methanogens produce methane which comes out through rice stalks, thus rice fields are known as one of the anthropogenic sources of atmospheric methane. Studies have shown that use of manure increases amount of methane emission from rice. To investigate mechanisms by which manure boosts methane emission, comparative soil metagenomics between inorganically (NPK) and pig manure fertilized paddy soils (PIG) were conducted. Results from taxonomy analysis showed that more abundant methanogens, methanotrophs, methylotrophs, and acetogens were found in PIG than in NPK. In addition, BLAST results indicated more abundant carbohydrate mabolisetm functional genes in PIG. Among the methane metabolism related genes, PIG sample showed higher abundance of methyl-coenzyme M reductase (mcrB/mcrD/mcrG) and trimethylamine-corrinoid protein Co-methyltransferase (mttB) genes. In contrast, genes that down regulate methane emission, such as trimethylamine monooxygenase (tmm) and phosphoserine/homoserine phosphotransferase (thrH), were observed more in NPK sample. In addition, more methanotrophic genes (pmoB/amoB/mxaJ), were found more abundant in PIG sample. Identifying key genes related to methane emission and methane oxidation may provide fundamental information regarding to mechanisms by which use of manure boosts methane emission from rice. The study presented here characterized molecular variation in rice paddy, introduced by the use of pig manure.

Co-digestion of Waste Glycerol with Swine Manure (폐 글리세롤과 돈분의 혼합 소화)

  • Kim, Sang-Hyoun;Sung, Shihwu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.18 no.2
    • /
    • pp.71-75
    • /
    • 2010
  • Production of crude glycerol from biodiesel industry is expected to exceed the commercial demand for purified glycerol in the near future. This study aimed to evaluate the feasibility of co-digestion of crude glycerol with swine manure. Crude glycerol up to 13.8 g/L was regarded as a good co-substrate for swine manure digester. It improved methane production and productivity by 90% and 120%, respectively. Methane yield of crude glycerol at the condition was estimated to be 232 mL/g. However, it inhibited methanogenic activity at above 27.5 g/L. Optimum concentration of crude glycerol for co-digestion with swine manure would be near to 13.8 g/L.

Interpretation of Origin and Methanogenic Pathways of Coalbed Gases from the Asem-Asem Basin, Southeast Kalimantan, Indonesia (인도네시아 칼리만탄 남동측에 위치하는 아셈-아셈분지 석탄층 가스의 기원과 메탄생성경로 해석)

  • Chun, Jong-Hwa;Hwang, In Gul;Lee, Wonsuk;Lee, Taehun;Kim, Yuri
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.261-271
    • /
    • 2022
  • Six gas samples were collected from coal and coaly shale from core AA-1, which was acquired from the Asem-Asem Basin, southeast Kalimantan, Indonesia. These coalbed gas samples were analyzed for the molecular composition, carbon isotope (δ13CCH4, δ13CC2, and δ13CCO2), hydrogen isotope (δDCH4), hydrocarbon index (CHC), and carbon dioxide-methane index (CDMI) to document their origin and methanogenic pathways. Core AA-1 successively consists of lower clastic sedimentary rocks (Sedimentary Unit-1, SU-1) containing coal and coaly shale, and upper limestone (Sedimentary Unit-2, SU-2), unconformably underlain by serpentinized basement interpreted as part of the Cretaceous Meratus subduction complex (MSC). The coal and coaly shale (SU-1) were deposited in a marshes nearby a small-scale river. Compositions of coalbed gases show that methane ranges from 87.35 to 95.29% and ethane ranges from 3.65 to 9.97%. Carbon isotope of coalbed methane (δ13CCH4) ranges from -60.3 to -58.8‰, while hydrogen isotope (δDCH4) ranges from -252.9 to -252.1‰. Carbon isotope of coalbed ethane (δ13CC2) ranges from -32.8 to -31.2‰, carbon isotope of coalbed carbon dioxide (δ13CCO2) ranges from -8.6 to -6.2‰. The coalbed CO2 is interpreted to be an abiogenic origin based on a combination of δ13CCO2 and CDMI and could have been transported from underlying CO2 bearing MSC through faults. The methanogenic pathways of coalbed gases are interpreted to have originated from primary methyl-type fermentation and mixed with CO2 reduction, affecting thermogenic non-marine coal-type gases based on analyses of isotopic ratios and various indexes.

Effects of Supplementation of Mixed Methanogens and Rumen Cellulolytic Bacteria on Biochemical Methane Potential (혼합 메탄균과 반추위 섬유소 분해균 첨가가 메탄발생에 미치는 영향)

  • Kim, Ji-Ae;Yoon, Young-Man;Kim, Chang-Hyun
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.45 no.4
    • /
    • pp.515-523
    • /
    • 2012
  • The study investigated the biochemical methane potential (BMP) assay of cellulose supplementing with mixed methanogens and cellulolytic bacteria to improve anaerobic digestion for methane production. For the BMP assay, 7 different microbial supplementation groups were consisted of the cultures of mixed methanogens (M), Fibrobacter succinogenes (FS), Ruminococcus flavefaciensn (RF), R. albus (RA), RA+FS and M+RA+FS including control. The cultures were added in the batch reactors with the increasing dose levels of 1% (0.5 mL), 3% (1.5 mL) and 5% (2.5 mL). Incubation for the BMP assay was carried out for 40 days at $38^{\circ}C$ and anaerobic digestate obtained from an anaerobic digester with pig slurry as inoculum was used. In results, 5% FS increased total biogas and methane production up to 10.4~22.7% and 17.4~27.5%, respectively, compared to other groups (p<0.05). Total solid (TS) digestion efficiency showed a similar trend to the total biogas and methane productions. Generally the TS digestion efficiency of the FS group was higher than that of other groups showing at the highest value of 64.2% in the 5% FS group. Volatile solid (VS) digestion efficiencies of 68.4 and 71.0% in the 5% FS and the 5% RF were higher than other groups. After incubation, pH values in all treatment groups were over 6.4 indicating that methanogensis was not inhibited during the incubation. In conclusion, the results indicated that the hydrolysis stage for methane production in anaerobic batch reactors was the late-limiting stage compared with the methanogenesis stage, and especially, as the supplementation levels of F. succinogenes supplementation increased, the methane production was increased in the BMP assay compared with other microbial culture addition.

The Methane Production from Organic Waste on Single Anaerobic Digester Equipped with MET (Microbial Electrochemical Technology) (미생물 전기화학 기술이 설치된 단일 혐기성소화조에서 유기성폐기물로부터 메탄생성)

  • Park, Jungyu;Tian, Dongjie;Lee, Beom;Jun, Hangbae
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.38 no.4
    • /
    • pp.201-209
    • /
    • 2016
  • Theoretical maximum methane yield of glucose at STP (1 atm, $0^{\circ}C$) is 0.35 L $CH_4/g$ COD. However, most researched actual methane yields of anaerobic digester (AD) on lab scale is lower than theoretical ones. A wide range of them have been reported according to experiments methods and types of organic matters. Recent year, a MET (Microbial electrochemical technology) is a promising technology for producing sustainable bio energies from AD via rapid degradation of high concentration organic wastes, VFAs (Volatile Fatty Acids), toxic materials and non-degradable organic matters with electrochemical reactions. In this study, methane yields of food waste leachate and sewage waste sludge were evaluated by using BMP (Biochemical Methane Potential) and continuous AD tests. As the results, methane production volume from the anaerobic digester equipped with MET (AD + MET) was higher than conventional AD in the ratio of 2 to 3 times. The actual methane yields from all experiments were lower than those of theoretical value of glucose. The methane yield, however, from the AD + MET occurred similar to the theoretical one. Moreover, biogas compositions of AD and AD + MET were similar. Consequently, methane production from anaerobic digester with MET increased from the result of higher organic removal efficiency, while, further researches should be required for investigating methane production mechanisms in the anaerobic digester with MET.

Effects of Magnetite(Fe3O4) as Electrical Conductor of Direct Interspecies Electron Transfer on Methane Yield of Food Wastewater (종간직접전자전달 전도체로서 Magnetite(Fe3O4)가 음폐수의 메탄생산에 미치는 영향)

  • Jun-Hyeong Lee;Tae-Bong Kim;Chang-Hyun Kim;Young-Man Yoon
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.31 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • Methane production by anaerobic digestion occurs through interspecies electron transfer (DIET), a synthetic metabolism between acetic and methanate bacteria through hydrolysis and acid production steps. In this study, to improve methane yield, the effect of addition of magnetite (Fe3O4), a conductor promoting DIET on methane production in food wastewater was investigated, and the effect on methane yield was assessed by methane potential (Bu) and maximum methane production rate [Rm(t0)] by the operation of batch type anaerobic reactor adding Fe3O4. The Bu and Rm(t0) of food wastewater without Fe3O4 were 0.496 Nm3/kg-VSadded and 38.24 mL/day, respectively. The t0 which reached to Rm appeared at 21.06 days during the operation of the anaerobic reactor. The Bu of food wastewater with Fe3O4 was 0.502, 0.498, 0.512, 0.510, 0.518, 0.523, 0.524, 0.540, and 0.549 Nm3/kg-VSadded in the treatment of 5, 10, 15, 20, 25, 30, 40, 70, and 100mM-Fe3O4, respectively, and the Bu significantly increased to 36.95% with the addition of magnetite in the addition of 15mM-Fe3O4. And, the addition of Fe3O4 shortened the duration to reach Rm from 21.06 days to the maximum of 14.67 days by the addition of Fe3O4. Therefore, the methane yield and production rate of food wastewater significantly improved with the addition of Fe3O4.