Co-digestion of Waste Glycerol with Swine Manure

폐 글리세롤과 돈분의 혼합 소화

  • Kim, Sang-Hyoun (Department of Environmental Engineering, Daegu University) ;
  • Sung, Shihwu (Department of Civil, Construction, and Environmental Engineering, Iowa State University)
  • 김상현 (대구대학교 환경공학과) ;
  • Received : 2010.06.11
  • Accepted : 2010.06.28
  • Published : 2010.06.30

Abstract

Production of crude glycerol from biodiesel industry is expected to exceed the commercial demand for purified glycerol in the near future. This study aimed to evaluate the feasibility of co-digestion of crude glycerol with swine manure. Crude glycerol up to 13.8 g/L was regarded as a good co-substrate for swine manure digester. It improved methane production and productivity by 90% and 120%, respectively. Methane yield of crude glycerol at the condition was estimated to be 232 mL/g. However, it inhibited methanogenic activity at above 27.5 g/L. Optimum concentration of crude glycerol for co-digestion with swine manure would be near to 13.8 g/L.

바이오디젤 과정에서 부산물로 발생하는 글리세롤의 양은 가까운 시일 안에 글리세롤 수요를 초과할 것으로 예상되고 있다. 본 연구에서는 글리세롤의 유효 이용 및 처리 측면에서 돈분과의 혼합 소화 가능성을 타진하였다. 글리세롤이 13.8 g/L로 투입된 경우 돈분 단독 소화에 비해 메탄 생성량과 속도가 각각 90%, 120% 향상되어 혼합 기질로 사용될 수 있음을 보였으며, 글리세롤로부터 메탄의 수율은 232 mL/g였다. 그러나 27.5 g/L 이상의 농도에서는 저해작용으로 인해 메탄 생성 속도가 감소되었다. 돈분과의 혼합 소화 시 글리세롤의 최적 주입 농도는 13.8 g/L부근인 것으로 사료된다.

Keywords

References

  1. Cheng K.-K., Liu H.-J., and Liu D.-H., Multiple growth inhibition of Klebsiella pneumoniae in 1,3-propanediol fermentation. Biotech. Lett. 27, pp. 19-22 (2005). https://doi.org/10.1007/s10529-004-6308-8
  2. Elvers, B., Hawkins, S., Weinheim, G.S., Ullmann's Encyclopaedia of Industrial Chemistry, 5th ed., VCH (1990).
  3. Fukuzaki S. and Nishio, N. Methanogenic fermentation and growth of granular methanogenic sludge on a methanol-propionate mixture. J. Ferment. Bioeng. 84, pp. 382-385 (1997). https://doi.org/10.1016/S0922-338X(97)89267-7
  4. Gonzalez, R., Murarka, A., Dharmadi, Y., Yzadani, S.S., A new model for the anaerobic fermentation of glycerol in enteric bacteria: Trunk and auxiliary pathways in Escherichia coli. Metabolic Engineering 10, pp. 234-245 (2008). https://doi.org/10.1016/j.ymben.2008.05.001
  5. Ito, T., Nakashimada, Y., Senba, K., Matsui, T., Nishio, N. Hydrogen and ethanol production from glycerol-containing wastes discharged after biodiesel manufacturing process. J. Biosci Bioeng. 100(3). pp. 260-265 (2005). https://doi.org/10.1263/jbb.100.260
  6. Lopez, J.A.S., Santos, M.A.M., Perez, A.F.C., Martin, A.M., Anaerobic digestion of glycerol derived from biodiesel manufacturing. Bioresource Technol. 100, pp. 3513-3517 (2009). https://doi.org/10.1016/j.biortech.2009.03.027
  7. Pachauri, N., He B., "Value-added utilization of crude glycerol from biodiesel production: A survey of current research activities," in Proceeding of 2006 ASABE Annual International Meeting. Paper no. 066223 (2006).
  8. Sabourin-Provost, G., Hallenbeck, P.C., High yield conversion of a crude glycerol fraction from biodiesel production to hydrogen by photofermentation. Bioresource Technol. 100, pp. 5609-5615 (2009). https://doi.org/10.1016/j.biortech.2009.06.017