• 제목/요약/키워드: 매개 공진

검색결과 49건 처리시간 0.019초

2모드 색소레이저 출력의 switching과 First-Passage-Time(FPT) 분포 (Switching and first-passage-time distributions in a two-mode ring dye laser)

  • 박구동;신종태;김태수
    • 한국광학회지
    • /
    • 제5권2호
    • /
    • pp.245-251
    • /
    • 1994
  • 고리형 공진기의 색소레이저에서 시계방향 모드와 반시계 방향 모드 사이에 나타나는 switching 현상을 펌프 매개변수 a, 폄프요동의 세기 Q 및 진동수폭 등을 변화시켜 Monte Carlo 방법으로 수치 계산하여 고찰하였다. 덧셈형 noise만 고려할 때와 이 noise에다 여기요동을 나타내는 곱셈형 색 noise를 포함시켰을 때 FPT분포에 미치는 영향을 조사하였다. 두 경우에 있어서 FTP의 분포는 짧은 시간영역에서는 0에서 상승하여 최대값에 도달하고, 긴 시간영역에서는 지수함수적으로 감소하는 경향은 같았으나 덧셈의 noise만 존재할 때에 비하여 곱셈의 색 noise가 포함될 때는 FPT가 감소하였다. 한편, 평균 FTP는 펌프매개변수 a의 증가와 더불어 증대하였으며 곱셈형 noise의 세기Q 및 진동수폭 $\GAMMA$가 증가할 때는 감소함을 알 수 있었다.

  • PDF

매개 가진되는 얇은 외팔보의 비선형 진동 안정성 (Stability of Nonlinear Oscillations of a Thin Cantilever Beam Under Parametric Excitation)

  • 방동준;이계동;조한동;정태건
    • 한국소음진동공학회논문집
    • /
    • 제18권2호
    • /
    • pp.160-168
    • /
    • 2008
  • This paper presents the study on the stability of nonlinear oscillations of a thin cantilever beam subject to harmonic base excitation in vertical direction. Two partial differential governing equations under combined parametric and external excitations were derived and converted into two-degree-of-freedom ordinary differential Mathieu equations by using the Galerkin method. We used the method of multiple scales in order to analyze one-to-one combination resonance. From these, we could obtain the eigenvalue problem and analyze the stability of the system. From the thin cantilever experiment using foamax, we could observe the nonlinear modes of bending, twisting, sway, and snap-through buckling. In addition to qualitative information, the experiment using aluminum gave also the quantitative information for the stability of combination resonance of a thin cantilever beam under parametric excitation.

축방향 왕복운동을 하는 집중질량을 가진 외팔보의 동적 안정성 해석 (Dynamic Stability Analysis of an Axially Oscillating Cantilever Beam with a Concentrated Mass)

  • 현상학;유홍희
    • 소음진동
    • /
    • 제11권1호
    • /
    • pp.118-124
    • /
    • 2001
  • The effect of a concentrated mass on the regions of dynamic instability of an axially oscillating cantilever beam is investigated in this paper. The equations of motion are derived using Kane's method and the assumed mode method. It is found that the bending stiffness is harmonically varied by axial inertia forces due to oscillating motion. Under the certain conditions between oscillating frequency and the natural frequencies, dynamic instability may occur and the magnitude of the bending vibration increase without bound. By using the multiple time scales method, the regions of dynamic instability are obtained. The regions of dynamic instability are found to be depend on the magnitude of a concentrated mass or its location.

  • PDF

축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증 (Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams)

  • 김성도;유홍희
    • 한국소음진동공학회논문집
    • /
    • 제16권2호
    • /
    • pp.176-182
    • /
    • 2006
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

유체맥동을 고려한 배관계의 진동해석 (Vibration Analysis of Pipes Considering Fluid Pulsation)

  • 서영수;정석현;이성현;홍진숙;정의봉
    • 한국소음진동공학회논문집
    • /
    • 제16권10호
    • /
    • pp.1050-1056
    • /
    • 2006
  • In this paper, a new method for the stability analysis of a pipe conveying fluid which pulsates periodically is presented. The finite element model is formulated liking into consideration of the effects of the fluid pulsating in a pipe. The damping and stiffness matrices in the finite element equation vary with time due to pulsating fluid. Coupled effects of several harmonic components in the velocity of fluid to a pipe is discussed. A new unstable region appears which will not appear in the stability analysis of single pulsating frequency. A method to directly estimate the forced response of pipe is also discussed. The results presented in this paper are verified by the time domain analysis.

헤드간섭으로 인한 회전 디스크의 안정성 분석 (Stability Analysis of Rotating Discs Due to Head interference)

  • 임경화
    • 소음진동
    • /
    • 제10권5호
    • /
    • pp.865-872
    • /
    • 2000
  • This paper presents the modeling, theoretical formulation, and stability analysis for a combined system of a spinning disc and a head that contacts the disc. In the analytic model, head interference is considered by a rotating mass-spring-damper system together with a frictional follower force on the damped annular discs. The multiple scale method is utilized to perform the stability system that shows the existence of instability associated with parametric resonances. Using the formulated system , instability regions of optical recording disc are investigated with variation of mass, stiffness and friction force of a head, respectively. The simulation results show that the stiffness of a head is the most sensitive parameter on the instability of the disc.

  • PDF

축 방향 왕복운동을 하는 외팔보의 안정성 해석을 위한 모델링 및 검증 (Modeling and Verification for Stability Analysis of Axially Oscillating Cantilever Beams)

  • 김성도;유홍희
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2005년도 추계학술대회논문집
    • /
    • pp.708-713
    • /
    • 2005
  • Modeling and verification for stability analysis of axially oscillating cantilever beams are investigated in this paper. Equations of motion for the axially oscillating beams are derived and transformed into dimensionless forms. The equations include harmonically oscillating parameters which are related to the motion-induced stiffness variation. Stability diagram is obtained by using the multiple scale perturbation method. To verify the accuracy of the modeling method, several points in the plane of the stability diagram are presented and solved. The present modeling method proves to be as accurate as a nonlinear finite element modeling method.

  • PDF

이동통신 시스템을 위한 사다리형 표면탄성파 필터의 구현 (Implementation of Ladder Type SAW Filters for Mobile Communication)

  • 이택주;정덕진
    • 대한전자공학회논문지SD
    • /
    • 제40권3호
    • /
    • pp.1-9
    • /
    • 2003
  • 본 연구에서는 1-단자 표면탄성파 공진기를 적용한 사다리형 구조 필터에 대한 전극 두께, 공진기의 반사기 하중 및 정적 정전용량비에 따른 주파수 응답특성의 고찰이 이루어졌으며, 최적화된 매개변수를 이용하여 송신 및 수신단용 RF 필터를 제작하였다. 제작된 필터는 800㎒ 대역 이동통신 시스템에 적용 가능하며, 외부회로에 의한 임피던스 정합이 필요하지 않다. 36°LiTaO₃ 압전기판 위에 Al-Cu(W 3%) 전극을 형성하여 제작하였으며, 3.8㎜×3.8㎜×1.5㎜세라믹 패키지에 실장되었다. 통과대역(25 ㎒)에서의 최소 삽입손실은 2.3 dB, 3-dB 대역폭은 약 33 ㎒, 통과대역 리플은 0.5 dB 미만이며, 약 30 dB 이상의 저지대역 감쇄를 확보할 수 있었다. 또한, 제작된 RF 필터의 내전력성 및 온도 변화에 따른 주파수 응답특성 실험을 통해 약 3.5 W의 내전력성과 -20℃∼80℃에서 최대 0.09 dB/℃의 3-dB 삽입손실 변화를 측정할 수 있었다.

파이로 충격 모사 시험 장치 주요 매개변수에 따른 SRS 분석 (The Parametric Study of the Design Variables on the SRS of Pyroshock Resonant Bar)

  • 전현규;김문국;김민성;권영민;유예진;김인걸
    • 한국군사과학기술학회지
    • /
    • 제21권4호
    • /
    • pp.413-421
    • /
    • 2018
  • The pyroshocks can cause failure of electronics devices and structures. Metal-metal impact methods are utilized to simulate mechanical pyroshock, and to adjust the knee frquency of the SRS(Shock Response Spectrum) through resonant structures. In this paper, the major parameters of pyroshock simulation device which affect the SRS were examined. Through the Hertzian contact law and the modal characteristics of the resonant bar, it was found that the SRS is affected by the length and mass of a bar and various impact conditions such as velocity and mass of impactor. The characteristics due to the geometric parameters of a resonant bar was analyzed by performing FEA and also the resonant bar was designed and fabricated. Through the pyroshock simulation test, the characteristics of SRS due to the variation of impact parameters were examined.

속도변동성분을 갖는 회전디스크의 횡진동 안정성 해석 (Stability Analysis of Transverse Vibration of a Spinning Disk with Speed Fluctuation)

  • 신응수;이기녕;신태명;김옥현
    • 한국소음진동공학회논문집
    • /
    • 제12권1호
    • /
    • pp.21-28
    • /
    • 2002
  • This paper intends to investigate the effects of speed fluctuation caused by the cogging torque in permanent magnetic motors on the stability of the transverse vibration for a spinning disk. Based on the Kirchhoff\`s plate theory and the assumed mode methods, a set of discretized equations of motion were derived for an annular disk rotating with a harmonically varying speed. Then, a perturbation method using the multiple time scales was employed and stability boundaries were determined explicitly in terms of the magnitude and frequency of speed fluctuation, a nominal sped and the modal characteristics of the disk. It is found that parametric resonance occurs at several speed ranges and a single mode or a combination of two modes are involved to cause instability. It is also observed that unstable regions become broadened as the spinning speed increases or two modes are combined in parametric instability. As numerical simulations, stability analysis of a conventional CD-ROM drive was performed. Results of this work can e used as guidelines for motor design and operations with low vibration.