• Title/Summary/Keyword: 마찰각

Search Result 784, Processing Time 0.026 seconds

Torque Ripple Improving and Analysis of Coil-winding Rotor of Magnetic Gear (권선계자형 자기 기어의 고 토크 리플 회전자에 대한 분석 및 개선)

  • Park, Eui-Jong;Kim, Yong-Jae
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.15 no.2
    • /
    • pp.259-266
    • /
    • 2020
  • Magnetic gears have the same characteristics as mechanical gears, and each rotor does not come in contact, which is advantageous over mechanical gears in friction noise, heat generation, and maintenance. In addition, when the rotor using the coil-winding is applied, it is possible to control the output of the gear as well as to cut off its own drive in the emergency situation and to change its gear ratio. So the application of the magnetic gear is infinite. However, when the coil-winding rotor is used, cogging torque due to the attraction force between the permanent magnet and the iron core appears, which leads to an increase in the torque ripple component causing the rotor vibration. Therefore, in this paper, various shapes of the coil-winding rotor are analyzed to reduce the torque ripple of the rotor, and the optimum shape for reducing the torque ripple of the magnetic gear is presented.

A Model Test on the Settlements of Adjacent Structures by Excavation (모형실험을 통한 굴착시 인접 구조물의 침하량 평가)

  • 석정우;최광철;김운영;김명모
    • Journal of the Korean Geotechnical Society
    • /
    • v.15 no.2
    • /
    • pp.17-27
    • /
    • 1999
  • It comes to be an important point to judge precisely the effects of excavation on adjacent ground and structures. It is incorrect to evaluate the ground settlement by excavation without considering the adjacent structure. In this study, laboratory scale tests were carried out by varying the position of structure under the condition of different system stiffness and wall friction to evaluate the behavior of adjacent structures and ground by excavation. When the distance between the structures and the wall was less than 0.3 times of the excavation depth, the ground settlement increased by 181%. No additional effect was observed when the distance was more than 1.0H. As the embedded depth was deeper, the influence zone was smaller, and few additional settlements and angular displacement were observed when the embedded depth was more than 0.75H.

  • PDF

Thermal Decomposition of High Speed Aircraft Fuel in Supercritical Phase (고속비행체 연료의 초임계조건에서 열분해반응 연구)

  • Kim, Joong-Yeon;Park, Sun-Hee;Chun, Byung-Hee;Kim, Sung-Hyun;Jeong, Byung-Hun;Han, Jeong-Sik
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2010.11a
    • /
    • pp.279-286
    • /
    • 2010
  • Hypersonic aircraft technologies have been developed with increase in flight speeds. As hypersonic flight speeds increase, heat loads on an aircraft and it's engine increase. Researches on cooling technologies using endothermic fuels are progressing in the USA, France, and Russia to treat the heat loads. Endothermic fuels are liquid hydrocarbon aircraft fuels which are able to absorb the heat loads by undergoing endothermic reactions, such as thermal and catalytic cracking. In this study, methylcyclohexane, n-octane, and n-dodecane were selected as model endothermic fuels and experiments in endothermic properties were implemented. Experimental conditions were supercritical phase of each model fuels in which actual endothermic fuels were exposed. The object of this study is to identify endothermic properties of the model endothermic fuels and to predict endothermic properties of actual fuels such as kerosene fuels.

  • PDF

Improvement of Endothermic Characteristics with Catalyst Molding in Hypersonic Aircraft Cooling System (초고속 비행체 냉각을 위한 연료의 흡열성능 개선용 성형촉매 적용연구)

  • Hyeon, Dong Hun;Lee, Tae Ho;Kim, Sung Hyun;Jeong, Byung Hun;Han, Jeong Sik
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.21 no.3
    • /
    • pp.56-60
    • /
    • 2017
  • In hypersonic aircraft, increase of aerodynamic heat and engine heat leads heat loads in airframe. It could lead structural change of aircraft's component and malfunctioning. Endothermic fuels are liquid hydrocarbon fuels which are able to absorb the heat load by undergoing endothermic reactions. In this study, exo-tetrahydrodicyclopentadiene was selected as a model endothermic fuel and experiments were investigated in endothermic fuel cooling system with zeolite catalyst. Three shapes of catalysts have been manufactured and endothermic characteristics were recovered. Bineded catalyst showed higher heat absorption and conversion than other two zeolite catalysts. In product distribution, binded catalyst showed higher aromatics composition.

Numerical Simulation of the Fully Developed Flow and Heat Transfer of a Plate Heat Exchanger Taking into Account Variation in the Corrugation Height (주름높이의 변화를 고려한 판형열교환기의 완전발달유동 및 열전달 수치해석)

  • Moh, Jeong-Hah
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.36 no.1
    • /
    • pp.1-8
    • /
    • 2012
  • Numerical analysis has been carried out to investigate the fully developed flow and heat transfer characteristics of a plate heat exchanger. Multi-cell models with an inlet part and outlet part are used to perform the numerical simulation. The plate heat exchanger is characterized by a chevron angle of $20^{\circ}$ and a P/H ratio of 2.0~4.0. The working fluid is water and the Reynolds numbers range from 300 to 1,500. The correlation is given in the form of $f=CRe^m$ for the friction factor and $j=CRe^m$ for the Colburn factor. It is found that the fully developed flow starts from the third cell and the Nusselt number increases with decreasing P/H ratios.

3D FE Model with FEA Factors and Plastic Shots for Residual Stress Under Oblique Shot Peening (경사충돌 피닝잔류응력에 미치는 해석인자의 영향 및 소성숏이 포함된 3차원 유한요소모델)

  • Lee, Bae-Hwa;Kim, Tae-Hyung;Lee, Hyung-Yil
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.323-331
    • /
    • 2010
  • In this study, we propose a 3D finite element (FE) model for the residual stress under oblique shot peening. Using the FE model for an oblique impact, we examine the effects of factors on the residual stress such as the Rayleigh damping in the material, dynamic friction, and the rate dependency of the material and systematically integrate the effects. The plastic deformation of the shot is also emphasized. Then, the FE model is used to study oblique multi-impacts. The results obtained using the FE model are compared with experimental x-ray diffraction (XRD) results; in contrast to the rigid and elastic shots, plastic shots are found to produce residual stresses similar to that shown in the XRD results. Thus, the 3D FE models with integrated factors and plastically deformable shots are validated. The proposed model will serve as a basis for the 3D FE model for multi-impacts with different impact angles to simulate the actual phenomenon of shot peening.

A Study on the Effect of Soil Properties on Structural Behavior of Fixed Jacket Type Offshore Structure (고정식 자켓형 해양구조물의 지반 물성치에 따른 구조 응답에 관한 연구)

  • Han, Sangwoong;Lee, Kangsu;Jang, Beom-Seon;Choi, Junhwan
    • Journal of the Society of Naval Architects of Korea
    • /
    • v.55 no.5
    • /
    • pp.438-447
    • /
    • 2018
  • For a fixed jacket type offshore structure directly supported by the seabed, the structural behavior of offshore structure depends on the soil properties. Soil properties affect on the stiffness of the piles and the boundary condition in the structural analysis. The structural analysis is performed using PSI (Pile-Soil Interaction) suggested in the code and design rule. PSI analysis of the jacket structure is carried out after various soil types are selected according to the soil properties like internal friction angle, undrained shear strength, unit weight and so on. Three types of soil are selected by varying strength for a clay and sand, respectively. The structural analysis of the jacket structure is performed using these soils. The results about axial and lateral reaction force and the stress and displacement on the structure are compared. As a results, the structural response is smaller as the soil becomes more stiff. In conclusion, it is confirmed that the structural response of fixed jacket type offshore platform supported by seabed is sensitive to the change of soil properties.

Characteristic of Bearing Capacity of Shallow Foundation upon Clay Ground Replaced by Sands Depending on Bearing Capacity Ratio (모래로 치환된 점토지반의 지지력비에 따른 얕은 기초의 지지력 특성)

  • Ha, Young-Min;Jung, Min-Hyung;Sin, Hyo-Hee;Lee, Song
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.11
    • /
    • pp.17-25
    • /
    • 2011
  • In this study, we considered the bearing capacity of strip footing over clay layers partially replaced by sand. The FEM analysis is performed to calculate the ultimate bearing capacity. Partial replacement is defined by multiples of footing width(B) and inclination of sides. The cases(B'=inf.) of sand layers equal to clay layers are preferentially conducted. The baring capacity of B'=inf. is comparative value for bearing capacity of partial replacement layers. ${\beta}$ is the ratio of ultimate bearing capacity of B'=inf and partial ultimate bearing capacity replacement. ${\beta}$ is used to analyze the characteristic of bearing capacity of clay layers partially replaced by sand. Each of the three undrained shear strengths of clay and friction angles of sand is considered. The result of this analysis shows that ${\beta}$ depends on sand depth.

An Analysis of Horizontal Behaviour of H-Pile under Mechanically Stabilized Earth Wall Abutment (보강토 교대 하부 H-Pile 수평 거동특성 연구)

  • Kim, Nagyoung;Jeon, Kyungsoo;Lee, Yongjun;Jun, Jintaek;Shim, Jaewon
    • Journal of the Korean GEO-environmental Society
    • /
    • v.9 no.2
    • /
    • pp.47-59
    • /
    • 2008
  • Application of mechanically stabilized earth wall (MSEW) abutment has been rapidly increasing in United States of America, Pennsylvania since 2002. MSEW is effective for reducing construction cost and period compared to general concrete reinforced wall. In the paper, theoretical background and conventional criterion of MSEW abutment that is widely used abroad are analyzed. Based on the results, application of suitable MSEW abutment to domestic bridge type is examined. For the application of MSEW abutment in Korea, load interacting with upper shoe in domestic bridge types and structural analyses of beam seat and pile are investigated. As a result, all applications are possible except for PSC BOX Bridge that has heavy self-weight of girder. Through two and three dimensional numerical analyses, horizontal behaviour mechanisms between pile and MSEW were analyzed and field tests are also carried out for seven piles behind earth walls. From results of field tests, it is confirmed that an angle of internal friction of backfill material needs to be greater than 34 degree to use H-Pile as foundation of MSEW.

  • PDF

Modeling of Multi-Stage Hydraulic Fracture Propagation (다단계 수압파쇄균열 전파 모델링 연구)

  • Jang, Youngho;Sung, Wonmo
    • Journal of the Korean Institute of Gas
    • /
    • v.19 no.5
    • /
    • pp.13-19
    • /
    • 2015
  • This paper presents a hydraulic fracture propagation model to describe propagation more realistically. In propagating the hydraulic fractures, we have used two criteria: maximum tangential stress to determine the fracture initiation angle and whether a hydraulic fracture intersects a natural fracture. The model was validated for the parameters relevant to fracture propagation, such as initiation angle and crossing ability through natural fracture. In order to check whether a hydraulic fracture crosses a natural fracture, the model results on crossing state excellently matched with the experimental data. In the sensitivity analysis for direction of maximum horizontal stress, frictional coefficient of fracture interface, and natural fracture orientation, the results show that hydraulic fracture intersects natural fracture, and then, propagated suitably with theoretical results according to fracture interaction criterion. In comparison of this model against vertical fracture approach, it was ascertained that there are discrepancies in fracture connectivity and stimulated reservoir volume.