DOI QR코드

DOI QR Code

Numerical Simulation of the Fully Developed Flow and Heat Transfer of a Plate Heat Exchanger Taking into Account Variation in the Corrugation Height

주름높이의 변화를 고려한 판형열교환기의 완전발달유동 및 열전달 수치해석

  • Moh, Jeong-Hah (Division of Mechanical & Automotive Engineering, Wonkwang Univ.)
  • 모정하 (원광대학교 기계자동차공학부)
  • Received : 2011.03.16
  • Accepted : 2011.10.18
  • Published : 2012.01.01

Abstract

Numerical analysis has been carried out to investigate the fully developed flow and heat transfer characteristics of a plate heat exchanger. Multi-cell models with an inlet part and outlet part are used to perform the numerical simulation. The plate heat exchanger is characterized by a chevron angle of $20^{\circ}$ and a P/H ratio of 2.0~4.0. The working fluid is water and the Reynolds numbers range from 300 to 1,500. The correlation is given in the form of $f=CRe^m$ for the friction factor and $j=CRe^m$ for the Colburn factor. It is found that the fully developed flow starts from the third cell and the Nusselt number increases with decreasing P/H ratios.

본 연구에서는 주름높이가 고려된 판형열교환기의 완전발달유동 및 열전달특성을 수치적으로 해석하였다. 여러 개의 단위셀(5개 또는 7개)을 연결한 다중셀에 입구부와 출구부가 부착된 모델을 기본으로 P/H비 변화($2.0{\leq}P/H{\leq}4.0$)에 따른 모델에 대하여 수치해석을 수행하였다. 작동유체는 물이며, 수치조건은 쉐브론각 $20^{\circ}$, $300{\leq}Re{\leq}1,500$이다. 그리고 마찰인자는 $f=CRe^m$의 형태로, Colburn 계수는 $j=CRe^m$의 형태로 상관관계식을 제시하였다. 수치해석 결과 완전발달유동은 세 번째 셀부터 시작되었으며, 누셀트수는 P/H비가 작을수록 큰 값을 나타냈다.

Keywords

References

  1. Cooper, A. and Usher, J.D., 1983, Heat Exchanger Design Handbook, Hemisphere publishing, New York.
  2. Bogaert, R. and Boles, A., 1995, "Global Performance of a Prototype Brazed Plate Heat Exchanger in a Large Reynolds Number Range," Experimental Heat Transfer, Taylor & Francis, No. 8, pp. 293-311.
  3. Muley, A. and Manglik, R. M., 1999, "Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger with Chevron Plates," ASME Journal of Heat Transfer, Vol. 121, pp. 110-117. https://doi.org/10.1115/1.2825923
  4. Stasiek, J., Collins, M. W., Ciofalo, M. and Chew, P. E., 1996, "Investigation of Flow and Heat Transfer in Corrugated Passages-I. Experimental Results," Int. J. Heat Mass Transfer, Vol. 39, No. 1, pp. 149-164. https://doi.org/10.1016/S0017-9310(96)85013-7
  5. Ciofalo, M, Stasiek, J. and Collins, M. W., 1996, "Investigation of Flow and Heat Transfer in Corrugated Passages-II. Numerical Simulations," Int. J. Heat Mass Transfer, Vol. 39, No. 1, pp. 165-192. https://doi.org/10.1016/S0017-9310(96)85014-9
  6. Jeong, J. Y., Nam, S. C. and Kang, Y, T, 2008, "A Numerical Analysis on the Heat Transfer and Pressure Drop Characteristics of Welding Type Plate Heat Exchangers," Trans. of KSME B, Vol. 32, No. 9, pp. 676-682. https://doi.org/10.3795/KSME-B.2008.32.9.676
  7. Moh, J. H., 2010, "Investigation of Flow and Heat Transfer Characteristics of Plate Heat Exchanger Taking into Account Entrance Effects and Variation in Corrugation Height," Trans. of KSME B, Vol. 34, No. 11, pp. 965-973. https://doi.org/10.3795/KSME-B.2010.34.11.965
  8. Yan, Y.Y., Lio, H.C. and Lin, T.F., 1998,, "Condensation Heat Transfer and Pressure Drop of Refrigerant R134A in a Plate Heat Exchanger," Int. Journal of Heat and Mass Transfer 42, pp. 993-1006.
  9. Yan, Y.Y. and Lin, T.F., 1999, "Evaporation Heat Transfer and Pressure Drop of Refrigerant R134A in a Plate Heat Exchanger," ASME Journal of Heat Transfer, Vol. 121, pp. 118-126. https://doi.org/10.1115/1.2825924
  10. Kim, Y. H. and Lee, K, J, 2002, "An Experimental Study on Evaporation Heat Transfer and Pressure Drop in Plated Heat Exchangers with Different Chevron Angles," Trans. of KSME B, Vol. 26, No. 2, pp. 269-277. https://doi.org/10.3795/KSME-B.2002.26.2.269