<학술논문>

DOI http://dx.doi.org/10.3795/KSME-B.2012.36.1.001

ISSN 1226-4881

주름높이의 변화를 고려한 판형열교환기의 관전발달유동 및 열전달 수치해석

모 정 하** * 원광대학교 기계자동차공학부

Numerical Simulation of the Fully Developed Flow and Heat Transfer of a Plate Heat Exchanger Taking into Account Variation in the Corrugation Height

Jeong Hah Moh**

* Division of Mechanical & Automotive Engineering, Wonkwang Univ.

(Received March 16, 2011 ; Revised October 14, 2011 ; Accepted October 18, 2011)

Key Words: Plate Heat Exchanger(관형열교환기), Chevron Angle(쉐브론각), Corrugation Angle(주름각), Corrugation Pitch(주름피치), Corrugation Height(주름높이), Fully Developed Flow(완전발달유동)

초록: 본 연구에서는 주름높이가 고려된 판형열교환기의 완전발달유동 및 열전달특성을 수치적으로 해 석하였다. 여러 개의 단위셀(5개 또는 7개)을 연결한 다중셀에 입구부와 출구부가 부착된 모델을 기본으 로 P/H비 변화(2.0≤P/H≤4.0)에 따른 모델에 대하여 수치해석을 수행하였다. 작동유체는 물이며, 수치조 건은 쉐브론각 20°, 300≤Re≤1,500이다. 그리고 마찰인자는f = CRe^m의 형태로, Colburn 계수는 j = CRe^m 의 형태로 상관관계식을 제시하였다. 수치해석 결과 완전발달유동은 세 번째 셀부터 시작되었으며, 누 셀트수는 P/H비가 작을수록 큰 값을 나타냈다.

Abstract: Numerical analysis has been carried out to investigate the fully developed flow and heat transfer characteristics of a plate heat exchanger. Multi-cell models with an inlet part and outlet part are used to perform the numerical simulation. The plate heat exchanger is characterized by a chevron angle of 20° and a P/H ratio of $2.0 \sim 4.0$. The working fluid is water and the Reynolds numbers range from 300 to 1,500. The correlation is given in the form of $f = CRe^m$ for the friction factor and $j = CRe^m$ for the Colburn factor. It is found that the fully developed flow starts from the third cell and the Nusselt number increases with decreasing P/H ratios.

	- 기호설명 -	P	: 주름피치
$egin{array}{c} A \\ C \\ D_h \\ f \\ G \\ h \end{array}$: 면적 : 상관관계식의 상수 : 수력직경 : 마찰인자 : 질량유속 : 대류열전달계수	$egin{array}{c} \Delta p \ Pr \ q'' \ Re \ T \ U \end{array}$: 압력차 : Prandtl 수 : 열유속 : Reynolds 수 : 유체온도 : 총괄열전달계수
$egin{array}{c} H \ j \ \dot{m} \end{array}$: 주름높이 : Colburn 계수 : 질량유량	ユ리: α θ	스문자 : 쉐브론각 : 주름각
Nu	: Nusselt 수	μ	: 점성계수

* Corresponding Author, jhmoh@wonkwang.ac.kr © 2012 The Korean Society of Mechanical Engineers

하첨자 cell : 단위셀

 in
 : 열교환기 입구

 out
 : 열교환기 출구

 wall
 : 전열판의 벽

1. 서 론

판형열교환기(plate heat exchanger)는 1930년대 에 최초로 제작되어 실용화되기 시작했다. 초창 기의 판형열교환기는 식품산업에서 우유의 저온 살균 등과 같은 용도로 사용되었으나 열전달 효 율도 낮고 판의 두께도 상당히 두꺼웠다. 오늘날 과 같은 형태의 주름진 열판(corrugated thermal plate) 모양을 갖추게 된 것은 1950년대 후반이었 다. 주름진 무늬의 열판을 엇갈리게 교대로 배치 함으로써 조립체의 강도가 대폭 향상되었고 허용 압력을 16bar 정도로 증가시킬 수 있었다. 오늘날 에는 판과 판 사이를 필러(filler)를 사용하여 용접 한 용접식 판형열교환기 등 다양한 형태의 판형 열교환기가 개발되고 있다. 이러한 발전에 따라 판형열교환기는 화학산업, 식품산업, 일반 공업 등 거의 모든 산업분야에서 광범위하게 사용되고 있으며, 최근에는 냉동 공조 산업분야에서 판형 열교환기의 적용이 증가하는 추세에 있다. 이와 더불어 오존층 파괴를 유발하는 기존 냉매를 친 환경적 냉매로 대체하기 위한 새로운 형태의 판 형열교환기(응축기, 증발기)가 개발되고 있다.

현재까지 냉동 공조분야에서 사용되고 있는 판 형열교환기에 대한 연구는 실험적인 또는 수치적 인 방법으로 다양하게 이루어져 왔다. Cooper,⁽¹⁾ Bogaert와 Boles,⁽²⁾ Muley와 Manglik,⁽³⁾ Stasiek 등,⁽⁴⁾ Ciofalo 등,⁽⁵⁾ 정종윤 등⁽⁶⁾ 그리고 모정하⁽⁷⁾는 상변화가 없는 유체(액체 또는 기체)만을 사용하 여 판형열교환기에 대한 유동 및 열전달특성을 연구하였다. 한편 Yan 등,^(8,9) 김윤호와 이규정⁽¹⁰⁾ 은 대체냉매를 이용한 판형열교환기의 실험을 통 하여 열전달 및 압력강하 특성을 고찰하였다. 대 체 냉매에 적합한 판형열교환기를 설계하기 위해 서는 냉매 측과 응축수(또는 가열수) 측의 열전 달계수로 표현되는 총괄열전달계수(overall heat transfer coefficients)가 필요하며 이를 위해서는 응 축수 측의 열전달계수를 구해야 한다. 지금까지 의 연구 결과를 살펴 보면 다양한 형태의 판형열 교환기에 대하여 응축수와 연관된 상관식의 제시 가 미흡한 실정이다. 또한 수치해석(주로 단위셀

에 대하여)인 경우에도 열교환기의 형상 및 유동 의 복잡성으로 인하여 연구결과가 거의 없는 실 정이다.

최근에 모정하⁽⁷⁾는 열전달 물질로 공기를 사용 하는 판형열교환기의 모델에 대하여 유동 및 열 전달특성을 고찰하였다. 그러나 산업체에서 사용 하는 판형열교환기는 주로 물을 취급한다. 따라 서 본 연구에서는 새로운 형태의 판형열교환기 개발에서 요구되는 총괄열전달계수의 계산에 필 요한 응축수(또는 가열수) 측의 열전달 상관식을 제시하고자 한다. 결과를 얻기 위해서는 완전발 달유동 상태를 유지해야 하므로 단위셀(unitary cell)이 아닌 여러 개의 셀이 연결된 다중셀(multi cell)을 해석 모델로 사용해야 한다. 이러한 목적 에 따라 본 연구에서는 상품화된 제품의 크기에 바탕한 다중셀 모델을 중심으로 수치해석을 수행 하여 완전발달유동의 특성을 파악하였으며, 주름 높이의 변화에 따른 유동 및 열전달 특성을 고찰 하였다. 이와 함께 해석을 통하여 얻은 수치 결 과에 최소자승법 등과 같은 수치기법을 적용하여 열전달 매체로 물을 사용하는 판형열교환기의 설 계에 적용할 수 있고, 산업현장에서 사용이 가능 한 열전달 상관관계식을 제시하고자 한다.

2. 해석모델

2.1 판형열교환기의 구조

판형열교환기의 열전달 특성을 수치적으로 해 석하기 위해서는 열교환기의 형상, 구조 및 유동 패턴 등의 정보가 필요하다. Fig. 1은 국내 회사 에서 제작된 용량이 약 23kW인 용접식 판형열교 환기의 실제 외부 모습을 나타낸 사진이다. 그림 의 왼쪽은 주름진 모양의 열판이며, 오른쪽은 저 온 및 고온유체의 입구와 출구를 나타낸 것이다.

Fig. 2는 주름진 열판 내의 유동 패턴과 단위셀 의 구조이다. 그림에서 α는 열판의 주름진 정도 를 나타내는 쉐브론각(chevron angle) 또는 경사각 이며, 주름각(corrugation angle)인 θ는 주름 사이 의 내부각으로써 α = (180-θ)/2의 관계가 성립 된다. Ciofalo 등⁽⁵⁾의 연구에 의하면 α ≤ 20°인 경우 열판 내의 유동은 그림과 같이 지그재그(zig -zag)의 형태로 진행된다. Fig. 2의 단위셀에서 P 는 주름피치(corrugation pitch)를, H는 열판의 주 름높이(corrugation height)를 나타낸다.

2

Fig. 1 Photograph of the real plate heat exchanger

Fig. 2 Flow patterns in crossed corrugated ducts and unitary cell

2.2 판형열교환기의 모델화

판형열교환기의 특성은 주로 주름피치(P), 주름 높이(H), 쉐브론각(α) 등으로 결정된다. 본 논문 에서는 α = 20°로 고정하고 주름피치/주름높이의 비, 즉 P/H비를 변화시켰으며, 완전발달유동의 특 성을 고찰하기 위하여 5개의 단위셀이 연결된 다 중셀과 입구부 및 출구부가 부착된 모델을 사용 하였다. Table 1은 주름피치 7mm(상업용 제품에 서 주로 사용하는 값)를 기준으로 다섯 종류의

 Table 1 Corrugation height and hydraulic diameter for the five P/H ratios

P/H ratio	2.0	2.5	3.0	3.5	4.0
H[mm]	3.5	2.8	2.33	2.0	1.75
D_h [mm]	4.79	4.24	3.78	3.39	3.07

Fig. 3 Multi-cell model with inlet and outlet part

Fig. 4 The two dimensional shape of unitary cell

P/H비에 대한 주름높이 및 식 (1)과 같이 정의되는 수력직경(hydraulic diameter)의 값이다. Fig. 3 은 본 연구에서 사용한 수치해석 모델의 3차원 형상을 나타낸 것이다. 그림에서 x는 유동방향이 며, 대칭 측면에 나타나는 주름진 형상은 일반적 으로 sine 함수의 형태로 표현된다.

2.3 단위셀

단위셀의 형상을 2차원으로 표현하면 Fig. 4와 같다. 그림에서 α는 쉐브론각을, θ는 주름각을,

Re		300	600	900	1200	1500
P/H	2.0	1.54	3.07	4.61	6.14	7.68
	2.5	1.39	2.77	4.16	5.54	6.93
	3.0	1.29	2.59	3.88	5.18	6.47
	3.5	1.24	2.48	3.71	4.95	6.19
	4.0	1.20	2.39	3.59	4.79	5.99

Table 2 Mass flow rate with Reynolds number for five P/H ratios ($\dot{m} \times 10^{3}$ [kg/s]=)

P는 주름피치를 나타낸다. z는 유동의 수직방향 이며, N-N은 주름피치 방향이다. 단위셀을 기준 으로 입구는 상단과 하단의 두 부분에서, 출구도 상단과 하단의 두 부분에서 이루어진다.

3. 수치해석

3.1 지배방정식 및 경계조건

유동은 물성치가 일정한 3차원 정상상태, 비압 축성 난류이며, 난류모델로서 표준 $k - \epsilon$ 모델을 사용하였다. 지배방정식은 연속방정식, 운동량방 정식, 난류운동량 에너지방정식(k), 난류운동량 에너지 소산율방정식(ϵ) 및 에너지방정식이다. 지 배방정식에 대한 자세한 내용은 참고문헌⁽⁷⁾에 언 급되어 있다.

입구에는 일정한 질량유량조건을, 출구에는 유 출(outflow) 경계조건을 부여하였다. 그리고 양쪽 측면(z-방향)에 대해서는 대칭조건을 적용하였다. 유량의 범위는 물대 물인 경우에 일반적으로 사 용되는 조건을 고려하여 0.0012≤m≤0.0077 kg/s 로 정하였다. 식 (2)와 같이 정의되는 Reynolds수 를 기준으로 범위 300≤Re≤1,500에 대하여 각각 의 P/H비에 대한 입구의 질량유량을 나타내면 Table 2와 같다. P/H비의 수력직경이 다르므로 같 은 Reynolds수에 대한 질량유량은 차이가 있다.

증발기로 사용되는 판형열교환기인 경우 증발 기에 공급되는 가열수의 온도는 대략 20℃이며, 냉매의 증발열유속은 5000 W/m² 전후이다. 따라 서 입구의 물온도는 20℃, 벽표면에 가해지는 열 유속은 5000 W/m²의 값을 사용하였다.

본 연구의 수치해석에 사용된 물의 물성치는 대기압, 20℃를 기준으로 밀도는 $\rho = 998kg/m^3$, 열전도율은 k = 0.603 W/mK, 정압비열은 $c_p =$ 4182 J/kgK, 점성계수는 $\mu = 0.001 Pa \cdot s$, 그리고 Prandtl 수는 Pr=6.97이다. 3.2 무차원 변수 및 매개변수

판형열교환기의 성능 조사에 필요한 무차원 변 수 및 매개변수를 Fig. 4에 표시된 단위셀을 기준 으로 기술하면 다음과 같다.

수력직경은 식 (1)과 같이 정의되며, Reynolds 수는 식 (2)와 같이 정의된다.

$$D_h = \frac{4A_c}{P} \tag{1}$$

$$Re = \frac{mD_h}{\mu A_c} \tag{2}$$

여기서 A_c 는 단위셀에서 상단입구와 하단입구의 단면적을, P는 접수주변길이(wetted perimeter)를 나타낸다. 그리고 마찰인자는 식 (3)과 같이 정의 된다.

$$f = \frac{|\Delta p|}{\rho U_{in}^2 / 2} \frac{D_h}{L_{cell}}$$
(3)

여기서 $|\Delta p|$ 는 단위 셀에서 압력강하를, U_{in} 는 유체의 입구속도를, L_{cell} 은 단위셀의 유동방향 길 이를 의미하며, $L_{cell} = P/\cos\alpha$ 로 계산된다. 그리 고 $|\Delta p|$ 는 수치해의 결과로부터 얻을 수 있으며 입구속도는 $U_{in} = \dot{m}/(\rho A_c)$ 의 관계로부터 계산할 수 있다.

증발기(또는 응축기)인 경우 냉매측 열전달계수 는 비교적 작은 두께인 열판의 전도저항을 무시 하면 다음 식으로 계산된다.

$$\frac{1}{h_r} = \frac{1}{U} - \frac{1}{h_w} \tag{4}$$

위 식에서 총괄열전달계수(U)는 대수평균온도차 (LMTD) 방법이 적용된 열평형해석을 통하여 구 할 수 있다. 따라서 냉매측 열전달계수(h_r)를 얻 기 위해서는 물측 열전달계수(h_w)를 알아야 한다. 수치모델에서 벽표면의 경계조건은 일정 열유 속이므로 물측 대류열전달계수는 식 (5)와 같이 계산된다. 여기서 T_s 는 한 개의 단위셀 표면에 대한 평균온도이며, T_m 은 z-방향(NF-NF 방향)에 서 유체의 평균온도를 의미한다. T_s 와 T_m 은 수 치해석 과정에서 값을 얻을 수 있다.

$$h = \frac{q''}{T_s - T_m} \tag{5}$$

따라서 Nusselt수 및 Cloburn 계수 j는 다음과 같은 식으로 정의할 수 있다. 여기서 k_f 는 유체 의 열전도율을 나타낸다.

$$Nu = \frac{hD_h}{k_f} \tag{6}$$

$$j = \frac{Nu}{Re \cdot Pr^{1/3}} \tag{7}$$

3.3 수치해석 방법 및 격자계

해석 모델이 복잡한 형태이기 때문에 직육면체 가 아닌 사면체(tetrahedron)를 사용하여 격자계를 구성하였다. P/H비 다섯 종류의 모델에 대하여 동일한 크기의 셀로 구성하였을 때 모델에 사용 된 셀수의 범위는 332,947~452,722이다.

판형열교환기에 대한 수치해석을 위하여 열 및 유체분야의 상용코드인 FLUENT를 사용하였으며 SIMPLE 알고리즘이 포함된 유한체적법을 적용하 였다. 지배방정식의 모든 변수들에 대하여 식 (8) 과 같은 수렴조건을 적용(온도인 경우 10⁻⁷이하) 하였고, 만족되는 경우 수렴이 완료되는 것으로 판단하여 계산을 종료하였다.

$$\left|\frac{\phi^{n+1} - \phi^n}{\phi^n}\right| < 10^{-4} \tag{8}$$

4. 결과 및 고찰

본 연구에서 사용한 수치모델과 유사한 형상 (입구부와 출구부가 부착된 다중셀 모델)에 대하 여 참고문헌⁽⁷⁾에서 해석을 수행하였기 때문에 수 치해에 대한 타당성 고찰은 생략한다.

본론에서는 완전발달유동, Nusselt 수, 마찰인자 및 Colburn 인자의 변화 특성과 Reynolds 수 및 P/H비의 함수로 표현되는 상관관계식에 대하여 고찰한다.

4.1 완전발달유동

다중셀 모델에 대하여 상관관계식을 제시하기 위해서는 완전발달유동(fully developed flow)에 대

[m=0.001kg/s]

Fig. 5 Velocity distribution at the centerline in consecutive cells for $\alpha = 20^{\circ}$ and P/H=2.3

Fig. 6 Nusselt number in consecutive cells for $\alpha = 20^{\circ}$ and P/H=2.28

한 고찰이 선행되어야 한다. Fig. 5는 쉐브론각= 20°, P/H비=2.28에 대하여 유동방향의 중심선 단 면(Fig. 4에서 F-F 방향)에서 5개 셀 내의 속도분 포를 유동방향에 따라 나타낸 것이다. 그림에 도 시된 속도분포의 범위는 유량의 순서에 따라 0~ 0.06m/s, 0~0.2256m/s 그리고 0~0.375m/s이다. 그 림에 표현된 속도분포의 형태를 관찰하면 질량유 량이 0.001kg/s인 경우 첫 번째 셀부터 완전발달 유동의 특성을 보이며, 유량이 0.003kg/s인 경우 두 번째 셀부터, 그리고 유량이 증가한 0.005kg/s 인 경우 세 번째 셀부터 완전발달유동의 특성이 나타나는 것으로 판단되었다.

Fig. 6은 7개의 셀로 구성된 다중셀 표면에 대 한 평균 Nusselt 수를 셀 순서대로 표현한 것이 다. 참고문헌⁽⁵⁾에 의하면 수치해석 방법 및 실험 결과에 따라 약간의 차이가 있지만 완전발달유동 은 3~5번 째 셀부터 시작되는 것으로 보고되었 다. Fig. 6에서 평균 Nusselt 수의 변화를 살펴보 면 이와 유사한 현상이 발견되었는데 첫 번째와 두 번째의 셀에서 입구영향(entry effects)이 약하 게 관찰되었고 세 번째 셀부터 완전발달유동의 특성이 나타나는 결과를 보였다.

유량의 변화에 따른 Nusselt 수도 이와 비슷한 변화의 모습을 보였다. 이러한 결과를 바탕으로 상관관계식의 도출에 필요한 자료는 네 번째 셀 에 대한 결과를 사용하였다.

4.2 Nusselt 수

다섯 개의 P/H비 모델에 대하여 Reynolds수의 변화에 따른 Nusselt수의 값을 도시하면 Fig. 7과 같다. 참고문헌⁽¹⁰⁾에 따르면 물을 사용하는 판형 열교환기인 경우 대류열전달계수의 값이 매우 높 은 것으로 보고되고 있는데, Nusselt수는 식 (6)과 같이 정의되므로 대류열전달계수는 10³의 크기로 높게 나타남을 알 수 있다. Nusselt수는 Reynolds 수의 증가에 비례하여 로그(log)함수의 형태로 증 가하는 모습을 보였으며, P/H비의 감소, 즉 주름 높이(H)가 증가할수록 높게 나타났다. 이는 주름 높이가 증가(주름피치는 일정)하면 단위셀의 표면 조건인 동일한 열유속(5000W/m²)에 대하여 벽의 표면적이 증가하게 되어 결과적으로 열전달이 촉

Fig. 7 Nusselt number with Reynolds number for five P/H ratio models

한편 P/H비의 감소에 따른 Nusselt수의 증가 정도는 Reynolds수에 관계없이 거의 일정한 특성을 보였다.

4.3 마찰인자의 상관관계식

식 (3)과 같이 정의되는 마찰인자는 수치결과에 서 얻은 압력차(|△p|) 자료를 이용하여 구할 수 있다. Fig. 8은 다섯 개의 P/H비 모델로부터 계산 된 마찰인자(f)를 300≤Re≤1,500의 범위에 대하 여 로그함수의 형태로 도시한 것이다. 마찰인자 는 열교환기의 선도에서 나타나는 일반적인 형태 로써 값은 직선형태로 변하며 Reynlods수의 증가 에 반비례하여 감소하는 특성을 보이고 있다.

수치해석기법을 적용하여 다섯 개의 곡선을 P/H비가 고려된 한 개의 식으로 정립하면 마찰인 자는 식 (9)와 같이 표현할 수 있다.

$$f = C \bullet Re^{m}$$
(9)

$$(3000 \le Re \le 1,500, \text{ Pr=6.97}, \alpha = 20^{\circ}, 2 \le P/H \le 4)$$

$$\alpha 7 \lambda$$

$$C = 4074.9 - 5670.8 (P/H) + 2967.7 (P/H)^{2} - 679.58 (P/H)^{3} + 57.51 (P/H)^{4}$$

 $m = -0.4141 + 0.1067(P/H) - 0.0317(P/H)^2$

4.3 Colburn 계수의 상관관계식

앞에서 얻은 결과를 바탕으로 식 (5)~식 (7)을

Fig. 8 Friction f factor with Reynolds number for five P/H ratio models

Fig. 9 Colburn j factor with Reynolds number for five P/H ratio models

이용하여 Reynolds 수의 범위 300~1,500에 대한 Colburn j계수를 계산할 수 있다. Fig. 9는 P/H비 다섯 개의 모델에 대하여 Reynolds 수 변화에 따 른 Colburn j계수의 값을 로그함수의 형태로 표시 한 것이다. 마찰인자의 경우와 마찬가지로 j값은 직선형태로 변하며 Reynlods수의 증가에 반비례 하여 감소하는 경향을 나타낸다.

그림에 도시된 다섯 개의 곡선에 수치기법을 적용하면 하나의 형태로 정리된 상관관계식을 얻 을 수 있으며 결과는 식 (10)과 같다.

$$j = C \cdot Re^{m}$$
(10)

$$(3000 \le Re \le 1,500, \text{ Pr=6.97}, \alpha = 20^{\circ}, 2 \le P/H \le 4)$$

$$c = 11.514 - 6.6895(P/H) + 2.8882(P/H)^{2} - 0.4058(P/H)^{3} m = -0.6416 - 0.1173(P/H) + 0.01796(P/H)^{2}$$

5. 결론

본 연구에서는 주름높이가 고려된 판형열교환 기의 완전발달유동 및 열전달 특성을 수치적으로 해석하였다. 여러 개의 단위셀을 연결한 다중셀 에 입구부와 출구부가 부착된 모델을 기본으로 P/H비 변화(2.0≤P/H≤4.0)에 따른 모델에 대하여 수치해석을 수행하였다. 주름피치 P=7mm, 쉐브론 각 α = 20°, Reynolds수 범위 300 ≤ Re ≤ 1,500 의 조건에서 열전달 매체로 물을 사용하는 판형 열교환기에 대한 수치해석을 통하여 다음과 같은 결론을 얻을 수 있었다.

(1) 판형열교환기를 구성하는 요소인 단위셀에 대하여 P/H비를 고려한 마찰인자 f는 300≤Re≤
1,500, Pr=6.97, α = 20° 및 2.0≤P/H≤4.0의 조건 에서 식 (9)와 같이 표현할 수 있다.

(2) 판형열교환기를 구성하는 요소인 단위셀에 대하여 P/H비를 고려한 Colburn j계수는 300≤Re ≤1,500, Pr=6.97, α = 20° 및 2.0≤P/H≤4.0의 조 건에서 식 (10)과 같이 표현할 수 있다.

후 기

이 논문은 2010년도 원광대학교 교비 지원에 의해서 수행되었으며, 이에 감사드립니다.

참고문헌

- Cooper, A. and Usher, J.D., 1983, *Heat Exchanger Design Handbook*, Hemisphere publishing, New York.
- (2) Bogaert, R. and Boles, A., 1995, "Global Performance of a Prototype Brazed Plate Heat Exchanger in a Large Reynolds Number Range," *Experimental Heat Transfer*, Taylor & Francis, No. 8, pp. 293~311.
- (3) Muley, A. and Manglik, R. M., 1999, "Experimental Study of Turbulent Flow Heat Transfer and Pressure Drop in a Plate Heat Exchanger with Chevron Plates," *ASME Journal of Heat Transfer*, Vol. 121, pp. 110~117.
- (4) Stasiek, J., Collins, M. W., Ciofalo, M. and Chew, P. E., 1996, "Investigation of Flow and Heat Transfer in Corrugated Passages- I. Experimental Results," *Int. J. Heat Mass Transfer*, Vol. 39, No. 1, pp. 149~164.
- (5) Ciofalo, M, Stasiek, J. and Collins, M. W., 1996, "Investigation of Flow and Heat Transfer in Corrugated Passages-II. Numerical Simulations," *Int. J. Heat Mass Transfer*, Vol. 39, No. 1, pp. 165~192.
- (6) Jeong, J. Y., Nam, S. C. and Kang, Y, T,

2008, "A Numerical Analysis on the Heat Transfer and Pressure Drop Characteristics of Welding Type Plate Heat Exchangers," *Trans. of KSME B*, Vol. 32, No. 9, pp. $676 \sim 682$.

- (7) Moh, J. H., 2010, "Investigation of Flow and Heat Transfer Characteristics of Plate Heat Exchanger Taking into Account Entrance Effects and Variation in Corrugation Height," *Trans. of KSME B*, Vol. 34, No. 11, pp. 965 ~ 973.
- (8) Yan, Y.Y., Lio, H.C. and Lin, T.F., 1998,, "Condensation Heat Transfer and Pressure Drop of Refrigerant R134A in a Plate Heat

Exchanger," Int. Journal of Heat and Mass Transfer 42, pp. 993 ~ 1006.

- (9) Yan, Y.Y. and Lin, T.F., 1999, "Evaporation Heat Transfer and Pressure Drop of Refrigerant R134A in a Plate Heat Exchanger," ASME Journal of Heat Transfer, Vol. 121, pp. 118~126.
- (10) Kim, Y. H. and Lee, K, J, 2002, "An Experimental Study on Evaporation Heat Transfer and Pressure Drop in Plated Heat Exchangers with Different Chevron Angles," *Trans. of KSME B*, Vol. 26, No. 2, pp. 269 ~ 277.