• Title/Summary/Keyword: 리튬 이차전지

Search Result 398, Processing Time 0.023 seconds

Fabrication and Characterization of Pitch/Cokes/Natural Graphite Composites as Anode Materials for High-Power Lithium Secondary Batteries (고출력 리튬이온 이차전지 음극재용 피치/코크스/천연흑연 복합재의 제조 및 전기화학적 특성평가)

  • Ko, Hyo Joon;Lim, Yun-Soo;Kim, Myung-Soo
    • Korean Journal of Materials Research
    • /
    • v.25 no.6
    • /
    • pp.279-287
    • /
    • 2015
  • In order to prepare anode materials for high power lithium ion secondary batteries, carbon composites were fabricated with a mixture of petroleum pitch and coke (PC) and a mixture of petroleum pitch, coke, and natural graphite (PC-NG). Although natural graphite has a good reversible capacity, it has disadvaantages of a sharp decrease in capacity during high rate charging and potential plateaus. This may cause difficulties in perceiving the capacity variations as a function of electrical potential. The coke anodes have advantages without potential plateaus and a high rate capability, but they have a low reversible capacity. With PC anode composites, the petroleum pitch/cokes mixture at 1:4 with heat treatment at $1000^{\circ}C$ (PC14-1000C) showed relatively high electrochemical properties. With PC-NG anode composites, the proper graphite contents were determined at 10~30 wt.%. The composites with a given content of natural graphite and remaining content of various petroleum pitch/cokes mixtures at 1:4~4:1 mass ratios were heated at $800{\sim}1200^{\circ}C$. By increasing the content of petroleum pitch, reversible capacity increased, but a high rate capability decreased. For a given composition of carbonaceous composite, the discharge rate capability improved but the reversible capacity decreased with an increase in heat treatment temperature. The carbonaceous composites fabricated with a mixture of 30 wt.% natural graphite and 70 wt.% petroleum pitch/cokes mixture at 1:4 mass ratio and heat treated at $1000^{\circ}C$ showed relatively high electrochemical properties, of which the reversible capacity, initial efficiency, discharge rate capability (retention of discharge capacity in 10 C/0.2 C), and charge capacity at 5 C were 330 mAh/g, 79 %, 80 %, and 60 mAh/g, respectively.

Synthesis and Characterizations of Mn1+XCo2-XO4 Solid Solution Catalysts for Highly Efficient Li/Air Secondary Battery (고효율의 리튬/공기 이차전지 공기전극용 Mn1+XCo2-XO4 고용체 촉매 합성 및 분석)

  • Park, Inyeong;Jang, Jaeyong;Lim, Dongwook;Kim, Taewoo;Shim, Sang Eun;Park, Seok Hoon;Baeck, Sung-Hyeon
    • Journal of the Korean Electrochemical Society
    • /
    • v.18 no.4
    • /
    • pp.137-142
    • /
    • 2015
  • $Mn_{1+X}Co_{2-X}O_4$ solid solutions with various Mn/Co ratios were synthesized by a combustion method, and used as cathode catalysts for lithium/air secondary battery. Their electrochemical and physicochemical properties were investigated. The morphology was examined by transmission electron microscopy (TEM), and the crystallinity was confirmed by X-ray diffraction (XRD) analyses. For the measurement of electrochemical properties, charge and discharge measurements were carried out at a constant current density of $0.2mA/cm^2$, monitoring the voltage change. Electrochemical impedance spectroscopy (EIS) analyses were also employed to examine the change in charge transfer resistance during charge-discharge process. $Mn_{1+X}Co_{2-X}O_4$ solid solutions showed enhanced cycleability as a cathode of Li/air secondary battery, and the performance was found to be strongly dependent on Mn/Co ratio. Among synthesized catalysts, $Mn_{1.5}Co_{1.5}O_4$ exhibited the best performance and cycleability, due to high charge transfer rate.

The Effect of Substrate Roughness on the Fabrication and Performance of All-Solid-State Thin-Film Lithium-Ion Battery (기판의 표면 거칠기 특성이 전고상 리튬박막 이차전지의 제작 및 전기화학 특성에 미치는 영향)

  • Kim, Jong Heon;Xiao, Cheng-Fan;Go, Kwangmo;Lee, Kyung Jin;Kim, Hyun-Suk
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.32 no.6
    • /
    • pp.437-443
    • /
    • 2019
  • All-solid-state thin-film lithium-ion batteries are important in the development of next-generation energy storage devices with high energy density. However, thin-film batteries have many challenges in their manufacturing procedure. This is because there are many factors, such as substrate selection, to consider when producing the thin film multilayer structure. In this study, we compare the fabrication and performance of all-solid-state thin-film lithium-ion batteries with a $LiNi_{0.5}Mn_{1.5}O_4$ cathode/LiPON solid electrolyte/$Li_4Ti_5O_{12}$ anode structure using stainless steel and Si substrates with different surface roughness. We demonstrate that the smoother the surface of the substrate, the thinner the thickness of the all-solid-state thin-film lithium-ion battery that can be made, and as a result, the corresponding electrochemical characteristics can be improved.

Crystal Structures and Electrochemical Properties of LiNi1-xMgxO2 (0≤x≤0.1) for Cathode Materials of Secondary Lithium Batteries (리튬 이차전지의 양극 활물질 LiNi1-xMgxO2 (0≤x≤0.1)의 결정구조 및 전기화학적 특성)

  • Kim, Deok-Hyeong;Jeong, Yeon Uk
    • Korean Journal of Metals and Materials
    • /
    • v.48 no.3
    • /
    • pp.262-267
    • /
    • 2010
  • $LiNi_{1-x}Mg_xO_2$(x=0, 0.025, 0.05, 0.075, 0.1) samples were synthesized by the solid-state reaction method. The crystal structure was analyzed by X-ray powder diffraction and Rietveld refinement. $LiNi_{1-x}Mg_xO_2$samples give single phases of hexagonal layered structures with a space group of R-3m. The calculated cation-anion distances and angles from the Rietveld refinement were changed with Mg contents in $LiNi_{1-x}Mg_xO_2$. The thicknesses of $NiO_2$ slabs were increased and the distances between the $NiO_2$ slabs were decreased with the increase in Mg contents in the samples. The electrical conductivities of sintered $LiNi_{1-x}Mg_xO_2$ samples were around $10^{-2}$ S/cm at room temperature. The electrochemical performances of $LiNi_{1-x}Mg_xO_2$were evaluated by coin cell test. Compared to $LiNiO_2$, $LiNi_{0.95}Mg_{0.05}O_2$ exhibited improved high-rate capability and cyclability due to the well-ordered layered structure by doping of Mg ion.

Improved Low-temperature Performance of Lithium Secondary Battery Using Energy Circulating Operation (리튬 이차전지의 저온 성능 개선을 위한 에너지 순환 작동 연구)

  • Yoon, Hyun-Ki;Ha, Sang-Hyeon;Lee, Jaein
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.26 no.6
    • /
    • pp.421-428
    • /
    • 2021
  • Lithium-ion secondary batteries exhibit advantageous characteristics such as high voltage, high energy density, and long life, allowing them to be widely used in both military and daily life. However, the lithium-ion secondary battery does have its limitation; for example, the output power and capacity are readily decreased due to the increased internal impedance during discharging at a lower temperature (-32℃, military requirement). Also, during charging at a lower temperature, lithium dendrite growth is accelerated at the anode, thereby decreasing the battery capacity and life as well. This paper describes a study that involves increasing the internal temperature of lithium-ion secondary battery by energy circulation operation in a low-temperature environment. The energy circulation operation allows the lithium-ion secondary battery to alternately charge and discharge, while the internal resistance of lithium-ion battery acts as a heating element to raise its own temperature. Therefore, the energy circulation operation method and device were newly designed based on the electrochemical impedance spectroscopy of the lithium-ion secondary battery to mediate the battery performance at a lower temperature. Through the energy circulation operation of lithium ion secondary battery, as a result of the heat generated from internal resistance in an extremely low-temperature environment, the temperature of the lithium-ion secondary battery increased by more than 20℃ within 10 minutes and showed a 75% discharging capacity compared with that at room temperature.

Synthesis and Investigation of LiVPO4O1-xFxvia Control of the Fluorine Content for Cathode of Lithium-ion Batteries (플루오린 함량 제어를 통한 LiVPO4O1-xFx 합성 및 리튬 이차전지 양극소재 전기화학 특성 분석)

  • Minkyung Kim;Dong-hee Lee;Changyu Yeo;Sooyeon Choi;Chiwon Choi;Hyunmin Yoon
    • Journal of Powder Materials
    • /
    • v.30 no.6
    • /
    • pp.516-520
    • /
    • 2023
  • Highly safe lithium-ion batteries (LIBs) are required for large-scale applications such as electrical vehicles and energy storage systems. A highly stable cathode is essential for the development of safe LIBs. LiFePO4 is one of the most stable cathodes because of its stable structure and strong bonding between P and O. However, it has a lower energy density than lithium transition metal oxides. To investigate the high energy density of phosphate materials, vanadium phosphates were investigated. Vanadium enables multiple redox reactions as well as high redox potentials. LiVPO4O has two redox reactions (V5+/V4+/V3+) but low electrochemical activity. In this study, LiVPO4O is doped with fluorine to improve its electrochemical activity and increase its operational redox potential. With increasing fluorine content in LiVPO4O1-xFx, the local vanadium structure changed as the vanadium oxidation state changed. In addition, the operating potential increased with increasing fluorine content. Thus, it was confirmed that fluorine doping leads to a strong inductive effect and high operating voltage, which helps improve the energy density of the cathode materials.

The Effects of the Nano-sized Adsorbing Material on the Electrochemical Properties of Sulfur Cathode for Lithium/Sulfur Secondary Battery (나노 흡착제가 Li/S 이차전지용 유황양극의 전기화학적 특성에 미치는 영향)

  • Song, Min-Sang;Han, Sang-Choel;Kim, Hyun-Seok;Ahn, Hyo-Jun;Lee, Jai-Young
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.13 no.4
    • /
    • pp.259-269
    • /
    • 2002
  • A battery based on the lithium/elemental sulfur redox couple has the advantage of high theoretical specific capacity of 1,675 mAh/g-sulfur. However, Li/S battery has bad cyclic durability at room temperature due to sulfur active material loss resulting from lithium polysulfide dissolution. To improve the cycle life of Li/S battery, PEGDME (Poly(ethylene glycol) dimethyl ether) 500 containing 1M LiTFSI salt which has high viscosity was used as electrolyte to retard the polysulfide dissolution and nano-sized $Mg_{0.6}Ni_{0.4}O$ was added to sulfur cathode as additive to adsorb soluble polysulfide within sulfur cathode. From experimental results, the improvement of the capacity and cycle life of Li/S battery was observed( maximum discharge capacity : 1,185 mAh/g-sulfur, C50/C1 = 85 % ). Through the charge-discharge test, we knew that PEGDME 500 played a role of preventing incomplete charge-discharge $behavior^{1,2)$. And then, in sulfur dissolution analysis and rate capability test, we first confirmed that nano-sized $Mg_{0.6}Ni_{0.4}O$ had polysulfide adsorbing effect and catalytic effect of promoting the Li/S redox reaction. In addition, from BET surface area analysis, we also verified that it played the part of increasing the porosity of sulfur cathode.

Development of Electrode Materials for Li-Ion Batteries and Catalysts for Proton Exchange Membrane Fuel Cells (리튬 이차전지용 전극 및 연료전지 촉매 소재 연구 개발 동향)

  • Yun, Hongkwan;Kim, Dahee;Kim, Chunjoong;Kim, Young-Jin;Min, Ji Ho;Jung, Namgee
    • Ceramist
    • /
    • v.21 no.4
    • /
    • pp.388-405
    • /
    • 2018
  • In this paper, we review about current development of electrode materials for Li-ion batteries and catalysts for fuel cells. We scrutinized various electrode materials for cathode and anode in Li-ion batteries, which include the materials currently being used in the industry and candidates with high energy density. While layered, spinel, olivine, and rock-salt type inorganic electrode materials were introduced as the cathode materials, the Li metal, graphite, Li-alloying metal, and oxide compound have been discussed for the application to the anode materials. In the development of fuel cell catalysts, the catalyst structures classified according to the catalyst composition and surface structure, such as Pt-based metal nanoparticles, non-Pt catalysts, and carbon-based materials, were discussed in detail. Moreover, various support materials used to maximize the active surface area of fuel cell catalysts were explained. New electrode materials and catalysts with both high electrochemical performance and stability can be developed based on the thorough understanding of earlier studied electrode materials and catalysts.

Electrochemical Performance of High-Voltage Lithium-Ion Batteries with NCM Cathode Varying the Thickness of Coating Layer by Atomic Layer Deposition (Atomic Layer Deposition의 두께 변화에 따른 NCM 양극에서의 고전압 리튬 이온 전지의 전기화학적 특성 평가)

  • Im, Jinsol;Ahn, Jinhyeok;Kim, Jungmin;Sung, Shi-Joon;Cho, Kuk Young
    • Journal of the Korean Electrochemical Society
    • /
    • v.22 no.2
    • /
    • pp.60-68
    • /
    • 2019
  • High-voltage operation of the lithium ion battery is one of the advantageous approaches to obtain high energy capacity without changing the conventional cell components and structure. However, operating at harsh condition inevitably results in severe side reactions at the electrode surface and structural disintegration of active material particles. Herein we coated layers composed of $Al_2O_3$ and ZnO on the electrode based on NCM using atomic layer deposition (ALD). Thicker layers of novel Al-doped ZnO (AZO) coating compared to conventional ALD coated layers are prepared. Cathode based on NCM with the varying AZO coating thickness are fabricated and used for coin cell assembly. Effect of ALD coating thickness on the charge-discharge cycle behavior obtained at high-voltage operation was investigated.

Preparation of Hybrid Carbon from Conducting Polymer-Coconut Shell Composites and Their Electrochemical Properties (코코넛 껍질-전도성 고분자 복합소재로부터 탄소 소재의 제조 및 전기화학적 특성 분석)

  • Jeongeun Park;Subin Shin;Yewon Yoon;Jiwon Park;Joonwon Bae
    • Applied Chemistry for Engineering
    • /
    • v.35 no.1
    • /
    • pp.37-41
    • /
    • 2024
  • The coconut shell, a by-product of popular tropical fruit, is a promising material due to its interesting properties. The preparation of the composite consisted of conducting polymer and coconut shell using a simple wet method, and subsequent carbonization produced a carbonized material under a controlled carbonization cycle. In addition, its electrochemical performance as an anode in lithium-ion batteries was also investigated. The appearance of the obtained materials was observed with a scanning electron microscope. The internal structure of the carbon derived from the coconut shell under a controlled heating profile was analyzed using a Raman spectroscope. A simple electrical measurement based on the ohmic relationship showed that the carbonized product has a significant electrical conductivity. The application of the carbonized product as anode in a lithium-ion battery was tested using half-cell charge/discharge experiments. This article provides important information for future research regarding the recycling of fruit shells and food waste.