• Title/Summary/Keyword: 리튬이온

Search Result 907, Processing Time 0.037 seconds

A Characteristics Analysis of a Li-Ion Battery using Hammimg Network (해밍네트워크를 이용한 리튬이온 배터리의 특성 분석)

  • Kim, J.H.;Lee, J.M.;Cho, B.H.
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.434-436
    • /
    • 2008
  • 같은 정격을 가진 배터리 일지라도 온도나 노화에 따라 용량, Direct current internal resistance(DCIR)이 서로 다른 값을 나타낸다. 또한, 용량과 DCIR의 상관관계가 항상 성립하는 것은 아니다. 이러한 특성으로 인해 펄스파워 관련 State of health(SOH)를 알기 어렵다. 이번 논문에서는 해밍네트워크를 이용한 리튬이온 배터리의 특성을 분석, 연구하였다. 펄스파워는 전압의 함수이다. 배터리 충방전 프로파일을 이용하여 전압패턴들을 선정한 후 특성 파라미터를 이용하여 해밍네트워크에 사전에 학습시킨다. 다음, 임의의 배터리 데이터를 통계 처리하여 전압패턴 특성 파라미터를 추출한 후 신경회로망에 입력하여 학습한 전압패턴들 중 임의의 배터리에 맞는 배터리를 선정한다. 패턴선정은 상온에서 10개의 리튬이온 프레시 배터리(1.3Ah)가 이용되었고 검증을 위해 DCIR 값을 구하였다.

  • PDF

High-Capacity Li-Ion 18650 Cell Screening Comparison and Analysis by Vibration and Shock for Battery Pack (배터리팩을 위한 진동·충격별 고용량 리튬이온 18650 셀 스크리닝 비교·분석)

  • Lee, Dongyoon;Yoon, Chang-O;Lee, Pyeongyeon;Kim, Jonghoon;Jang, Minho;Lim, Cheolwoo
    • Proceedings of the KIPE Conference
    • /
    • 2018.07a
    • /
    • pp.458-459
    • /
    • 2018
  • 배터리팩에 사용되는 리튬이온 배터리는 제조공정 과정에 따라 각각의 배터리 마다 부피에 의한 물리적 특성, 내부 저항, 자가 방전률, 셀 용량, 배터리 노화 속도 등 여러 가지 특성이 다르다. 배터리 팩의 효율적 운용을 위해 이러한 단위 셀 간편차를 최소화 하는 것이 필요하다. 본 논문에서는 두 종류의 고용량 리튬이온 배터리를 선정하여 진동 충격 실험 전 후 개방 회로 전압(open circuit voltage, OCV)를 측정하고 Matlab을 사용하여 비교 분석 하였다. OCV 비교 분석 데이터를 이용하여 통계적 분석 기반 셀 스크리닝을 진행하였고 이에 대한 결과를 비교 분석하였다.

  • PDF

저궤도 인공위성 배터리의 발사장 운용에 관한 연구

  • Park, Hui-Seong;Jang, Jin-Baek;Yang, Jeong-Hwan
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.37 no.2
    • /
    • pp.180.2-180.2
    • /
    • 2012
  • 저궤도 인공위성에서 배터리는 태양전지 배열기에서 생성된 전력을 저장하여 탑재체 구동과 식구간 위성의 동작 유지를 위하여 사용된다. 최근 상용 배터리 시장에서도 리튬이온 배터리의 보급이 많이 이루진거와 마찬가지로 인공위성에서도 리튬이온 배터리의 사용이 보편화 되는 추세이다. 리튬이온 배터리가 기존에 인공위성에서 사용되던 니켈카드늄이나 니켈수소 배터리에 비하여 자연 방전량이 적다고는 하지만 이 또한 존재하며, 초기 위성 발사시 태양전지 배열기의 전개를 통한 전력 생산이 이루어질 때까지 위성의 동작을 보장하고 임수종료까지 에너지를 충방전 할 수 있는 상태를 유지하여야 하므로 위성 발사 전까지 배터리의 상태를 최적으로 유지해야 함은 필수적이다. 본 연구에서는 저궤도 인공위성의 발사 전까지 배터리의 상태를 최적화 하기위한 배터리 운용에 관하여 기술하며, 배터리 상태에 대한 실측 데이터를 제시하여 배터리의 정상상태를 검증하였다.

  • PDF

Analysis of the parameter change of high power lithium ion battery according to vibration test based on statistical analysis (통계적 분석에 기반한 진동에 따른 고출력 리튬이온 배터리의 파라미터 변화 분석)

  • Lee, P.Y.;Yoon, C.O.;Kim, J.H.;Jang, S.S.
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.453-454
    • /
    • 2017
  • 본 논문에서는 환경 시험 중 한가지 방법인 진동 시험(Vibration test) 프로파일을 적용하여 고출력 리튬이온18650 셀(cell)에 물리적인 진동을 가하고 진동 시험 전 후 고출력 리튬이온 18650 셀의 전기적 특성 기반 내부 파라미터를 추출하였다. 통계적 기법인 상관 관계 및 대응 표본 t 검정을 적용하여 내부 파라미터인 방전 용량(discharged capacity), 방전 저항(discharged resistance), OCV(open circuit voltage) 간의 관계 및 변화를 비교 분석하였다.

  • PDF

Thermal analysis and estimation of high power 18650 lithium ion battery under varying current condition (고출력 18650 리튬이온 배터리의 가변전류 열해석 및 추정)

  • Kang, Taewoo;Yoo, Kisoo;Lee, Pyeong-Yeon;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2019.07a
    • /
    • pp.424-425
    • /
    • 2019
  • 본 논문은 1차 RC 등가회로를 이용하여 리튬이온 배터리의 저항성 발열인 비가역 발열의 파라미터를 제시하였다. 발열 추정을 위해 1 C-rate에서 HPPC(Hybrid Pulse Power Characterization) 실험을 통하여 비가역 발열의 파라미터인 SOC 5%별 내부 저항을 추출하였다. 추출된 SOC 5%별 저항을 이용하여 1C-rate에서 3C-rate로 변화하는 조건에서 열 추정 성능을 확인하였다. 높은 C-rate로 방전 전류가 변화하는 상황에서 발열 시뮬레이션과 실험값을 비교하였으며, 1C-rate의 HPPC 실험에서 얻어진 내부 저항이 부하의 변동에 따른 리튬이온 배터리의 발열 추정 파라미터로써 사용될 수 있음을 검증하였다.

  • PDF

Chemical Stability of Lithium Lanthanum Titanate (Li0.5La0.5TiO3) as a Solid Electrolyte for Lithium Secondary Batteries

  • Eun, Yeong-Jin;Im, Wan-Gyu;Lee, Won-Jun
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2014.02a
    • /
    • pp.202.1-202.1
    • /
    • 2014
  • 최근 대용량 에너지 저장장치로 사용하고자 하는 리튬-공기전지는 리튬 음극과 액체 전해질 사이의 화학적 불안정성이 문제가 되고 있다. 또한 리튬이온전지는 액체전해질의 사용으로 인해 폭발 등의 안정성 문제가 대두되고 있는 실정이다. 때문에 리튬-공기전지에서 리튬 음극을 액체 전해질로부터 보호할 수 있으며, 리튬이온전지의 액체전해질과 대체하였을 때 전극과도 안정한 고체전해질의 연구가 필요하다. 고체전해질은 구조적으로 crystalline, glassy, 폴리머로 나눌 수 있는데, 이 중 crystalline 구조의 고체전해질은 glassy 및 폴리머 고체전해질에 비해 상온에서 비교적 이온전도도가 높다고 알려져 있다 [1]. 그러나 이온전도도가 높은 황화물 및 질화물 고체전해질은 수분에 민감한 반면 [2,3], 산화물 계열의 물질은 안정할 것으로 예상된다. 본 연구에서는 이온전도도가 높은 산화물인 lithium lanthanum titanate ($Li_{0.5}La_{0.5}TiO_3$, LLTO)를 고체전해질로 선정하여 다양한 환경에서 화학적 안정성에 관해 연구하였다. LLTO와 각종 용액과의 화학적 안정성을 살펴보기 위해 고체전해질을 DI water, 1 M $LiPF_6$ Ethylene Carbonate (EC)-Dimethyl Carbonate (DMC) (50:50 vol.%), 0.57 M LiOH (pH=13), 0.1 M HCl (pH=1)에 immersion하고 무게, 표면형상, 상(phase), 이온전도도 등의 변화를 관찰하였다. 또한 LLTO와 전극간의 반응성을 알아보기 위해 LLTO 분말과 음극물질인 $Li_4Ti_5O_{12}$ 및 양극물질인 $LiCoO_2$ 분말을 혼합한 후 $300^{\circ}C{\sim}700^{\circ}C$의 온도범위에서 열처리하여 반응을 가속화 한 후 상변화 현상을 살펴보았다.

  • PDF

Thermal Analysis of Lithium-ion Cell Using Equivalent Properties and Lumped Capacitance Method (등가물성 및 집중용량법을 이용한 리튬-이온 전지의 열해석)

  • Lee, Hee Won;Park, Il Seouk
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.37 no.8
    • /
    • pp.775-780
    • /
    • 2013
  • In general, the battery module of an electric vehicle (EV) consists of lithium-ion cells. A lithium-ion battery is a secondary rechargeable battery, and it consists of numerous stacked plates that serve as electrodes and separators. Owing to these microstructural features, its numerical analysis is very expensive. Therefore, this study aims to present a simplified thermal analysis model using equivalent thermal properties, and we compare the experimental results with numerical results for 185.3Ah and 20Ah cells. Furthermore, we show the thermal behavior of cells without the finite element method (FEM) or finite volume method (FVM) by adopting the lumped capacitance method (LCM).

Developement of Environment-friendly, High-performance and Compact Lithium-Ion Batteries for Substation Emergency Power System (변전소 비상전원용 친환경·고성능 리튬이온축전지 개발·적용)

  • Kim, Sung-Arm;Han, Byung-Jun;Hwang, Yoon-Goen;Kim, Jung-Sik
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.359-360
    • /
    • 2015
  • 변전소용 축전지는 변전소 AC 상용전원이 정전되었을 때 직류전원을 중단없이 공급하기 위한 비상용 전원설비로써 대부분의 변전소에서 납축전지를 이용하고 있으나 환경유해 물질 배출, 짧은 수명과 유지보수의 번거로움 등 설비 운영상의 문제점이 있다. 최근 2차전지는 휴대폰, 노트북 등 휴대기기뿐 아니라 전기차, ESS 등 산업분야에 리튬이온축전지의 사용이 확대되며 관심이 높아지고 있는 추세이다. 한전에서는 2008년부터 154kV 용산 등 4개 변전소에 납축전지 대신 리튬이온축전지를 설치하여 시범사용을 지속해 오고 있으며 향후 신설되는 변전소와 축전지 노후교체가 필요한 변전소에는 리튬이온축전지를 적용할 계획이다. 본 논문에서는 기존 변전소용 납축전지의 운영상 문제점 해소와 함께 친환경 고성능, 콤팩트형 2차전지로 각광받고 있는 리튬이온축전지 도입을 통한 변전소 비상전원용 축전지 개발 적용방안에 대해 소개하고자 한다.

  • PDF

Characterization of Polyolefin Separator Support Membranes with Hydrophilic Coatings (폴리올레핀계 다공성 세퍼레이터 지지체 막의 친수 코팅에 따른 특성 평가)

  • Park, Yun Hwan;Nam, Sang Yong
    • Membrane Journal
    • /
    • v.27 no.1
    • /
    • pp.92-103
    • /
    • 2017
  • In this study, electrochemical performance of the hydrophilized separator for the lithium ion battery is studied. The polyolefin based material used as the separator for the lithium ion battery is hydrophobic, and the electrolytic solution using a carbonate-based organic solvent is hydrophilic. Therefore, the polyolefin separator is hydrophilized using various hydrophilic polymers because lithium ion battery uses an aqueous electrolyte solution. In order to evaluate change of the coated separator, the performances of separator in terms of surface morphology, porosity and the wettability are investigated. Finally, the resistance and the ionic conductivity of separator coated with lithium ion are measured to evaluate the performance of lithium ion battery. Separator coated with PMVE shows good hydrophilicity and excellent ionic conductivity because the porosity of the separator is maintained. We can confirm that this property makes potential candidates for lithium ion battery.

The Aapplication of Ionic Liquid Electrolyte for Lithium Ion Batteries (상온 이온성 액체의 리튬 이차 전지 전해질로써의 적용)

  • Kim, Jineun;Mun, Junyoung
    • Prospectives of Industrial Chemistry
    • /
    • v.23 no.1
    • /
    • pp.30-41
    • /
    • 2020
  • 최근 전기차, 신재생에너지 등장 등으로 중대형 이차전지 시장이 확대되면서, 리튬 이온 배터리 안전성 이슈 관련 고안전성 전해액 소재에 대한 관심이 높아졌다. 다양한 고안전성 전해액 시스템 중, 상온 이온성 액체는 비발화성, 낮은 증기압 특성으로 많은 관심을 받고 있다. 뛰어난 물리적 특성에도 불구하고 리튬 이온 배터리의 전해액으로 사용되기 위해서는 전도도 및 전기화학 안전성, 전극 계면 거동이 전기화학 성능을 얻는데 만족되어야 한다. 많은 종류의 상온 이온성 액체들이 분자 구조 설계 및 양극/음극 전해액 사용, 전지 내 부품 안전성 확보 등의 다양한 접근 방법들로 연구가 진행되어 왔다. 향후 지속적인 전지 안전성의 이슈에 대한 중요성 증대로 상온 이온성 액체에 대한 연구 역시 더 활발해질 것으로 기대되며, 본 기고문에서는 다양한 상온 이온성 액체들이 전지 시스템에 적용된 연구동향에 대해서 정리하고 소개하고자 한다.