The Aapplication of Ionic Liquid Electrolyte for Lithium Ion Batteries

상온 이온성 액체의 리튬 이차 전지 전해질로써의 적용

  • Kim, Jineun (Department of Energy and Chemical Engineering, Incheon National University) ;
  • Mun, Junyoung (Department of Energy and Chemical Engineering, Incheon National University)
  • 김진은 (인천대학교 에너지화학공학과) ;
  • 문준영 (인천대학교 에너지화학공학과)
  • Published : 2020.02.28

Abstract

최근 전기차, 신재생에너지 등장 등으로 중대형 이차전지 시장이 확대되면서, 리튬 이온 배터리 안전성 이슈 관련 고안전성 전해액 소재에 대한 관심이 높아졌다. 다양한 고안전성 전해액 시스템 중, 상온 이온성 액체는 비발화성, 낮은 증기압 특성으로 많은 관심을 받고 있다. 뛰어난 물리적 특성에도 불구하고 리튬 이온 배터리의 전해액으로 사용되기 위해서는 전도도 및 전기화학 안전성, 전극 계면 거동이 전기화학 성능을 얻는데 만족되어야 한다. 많은 종류의 상온 이온성 액체들이 분자 구조 설계 및 양극/음극 전해액 사용, 전지 내 부품 안전성 확보 등의 다양한 접근 방법들로 연구가 진행되어 왔다. 향후 지속적인 전지 안전성의 이슈에 대한 중요성 증대로 상온 이온성 액체에 대한 연구 역시 더 활발해질 것으로 기대되며, 본 기고문에서는 다양한 상온 이온성 액체들이 전지 시스템에 적용된 연구동향에 대해서 정리하고 소개하고자 한다.

Keywords

References

  1. X. H. Liu and J. Y. Huang, In situ TEM electrochemistry of anode materials in lithium ion batteries, Energ. Environ. Sci., 4, 3844-3860 (2011). https://doi.org/10.1039/c1ee01918j
  2. K. R. J. Lovelock, C. Kolbeck, T. Cremer, N. Paape, P. S. Schulz, P. Wasserscheid, F. Maier, and H. P. Steinruck, Influence of different substituents on the surface composition of ionic liquids studied using ARXPS, J. Phys. Chem. B, 113, 2854-2864 (2009). https://doi.org/10.1021/jp810637d
  3. G. H. Min, T. Yim, Y. L. Hyun, H. J. Kim, J. Mun, S. Kim, S. M. Oh, and G. K. Young, Synthesis and physicochemical properties of ionic liquids: 1-Alkenyl-2,3-dimethylimidazolium tetrafluoroborates, Bull. Korean Chem. Soc., 28, 1562-1566 (2007). https://doi.org/10.5012/bkcs.2007.28.9.1562
  4. T. Yim, H. Y. Lee, H. J. Kim, J. Mun, S. Kim, S. M. Oh, and Y. G. Kim, Synthesis and properties of pyrrolidinium and piperidinium bis (trifluoromethanesulfonyl) imide ionic liquids with allyl substituents, Bull. Korean Chem. Soc., 28, 1567-1572 (2007). https://doi.org/10.5012/bkcs.2007.28.9.1567
  5. J. Mun, Y. S. Jung, T. Yim, H. Y. Lee, H.-J. Kim, Y. G. Kim, and S. M. Oh, Electrochemical stability of bis(trifluoromethanesulfonyl)imide-based ionic liquids at elevated temperature as a solvent for a titanium oxide bronze electrode, J. Power Sources, 194, 1068-1074 (2009). https://doi.org/10.1016/j.jpowsour.2009.05.048
  6. T. Yim, C. Y. Choi, J. Mun, S. Oh, and Y. G. Kim, Synthesis and properties of acyclic ammonium-based ionic liquids with allyl substituents as electrolytes, Molecules, 14, 1840-1851 (2009). https://doi.org/10.3390/molecules14051840
  7. J. Mun, S. Kim, T. Yim, J. H. Ryu, Y. G. Kim, and S. M. Oh, Comparative study on surface films from ionic liquids containing saturated and unsaturated substituent for LiCoO2, J. Electrochem. Soc., 157, A136-A141 (2010). https://doi.org/10.1149/1.3265476
  8. J. Mun, T. Yim, C. Y. Choi, J. H. Ryu, Y. G. Kim, and S. M. Oh, Linear-sweep thermammetry study on corrosion behavior of al current collector in ionic liquid solvent, Electrochem. Solid-State Lett., 13, A109 (2010). https://doi.org/10.1149/1.3432256
  9. E. Cha, J. Mun, E. r. Cho, T. Yim, Y. G. Kim, S. M. Oh, S. A. Lim, and J. W. Lim, The corrosion study of Al current collector in phosphonium ionic liquid as solvent for lithium ion battery, Journal of the Korean Electrochemical Society, 14, 152-156 (2011). https://doi.org/10.5229/JKES.2011.14.3.152
  10. J. Mun, T. Yim, S. Jurng, J.-H. Park, S.-Y. Lee, J. H. Ryu, Y. G. Kim, and S. M. Oh, The feasibility of a pyrrolidinium-based ionic liquid solvent for non-graphitic carbon electrodes, Electrochem. Commun., 13, 1256-1259 (2011). https://doi.org/10.1016/j.elecom.2011.08.030
  11. J. Mun, T. Yim, K. Park, J. H. Ryu, Y. G. Kim, and S. M. Oh, Surface film formation on LiNi0.5Mn1.5O4 electrode in an ionic liquid solvent at elevated temperature, J. Electrochem. Soc., 158, A453-A457 (2011). https://doi.org/10.1149/1.3560205
  12. E. Cho, J. Mun, O. B. Chae, O. M. Kwon, H.-T. Kim, J. H. Ryu, Y. G. Kim, and S. M. Oh, Corrosion/passivation of aluminum current collector in bis(fluorosulfonyl)imide-based ionic liquid for lithium-ion batteries, Electrochem. Commun., 22, 1-3 (2012). https://doi.org/10.1016/j.elecom.2012.05.018
  13. J. Mun, T. Yim, J. H. Park, J. H. Ryu, S. Y. Lee, Y. G. Kim, and S. M. Oh, Allylic ionic liquid electrolyte-assisted electrochemical surface passivation of LiCoO2 for advanced, safe lithium-ion batteries, Sci. Rep., 4, 5802 (2014). https://doi.org/10.1038/srep05802
  14. H.-T. Kim, J. Kang, J. Mun, S. M. Oh, T. Yim, and Y. G. Kim, Pyrrolinium-based ionic liquid as a flame retardant for binary electrolytes of lithium ion batteries, ACS. Sustain. Chem. Eng., 4, 497-505 (2015).
  15. M. Galinski, A. Lewandowski, and I. Stepniak, Ionic liquids as electrolytes, Electrochim. Acta, 51, 5567-5580 (2006). https://doi.org/10.1016/j.electacta.2006.03.016
  16. H. Yoon, P. C. Howlett, A. S. Best, M. Forsyth, and D. R. MacFarlane, Fast charge/discharge of Li metal batteries using an ionic liquid electrolyte, J. Electrochem. Soc., 160, A1629-A1637 (2013). https://doi.org/10.1149/2.022310jes
  17. C. S. Stefan, D. Lemordant, B. Claude-Montigny, and D. Violleau, Are ionic liquids based on pyrrolidinium imide able to wet separators and electrodes used for Li-ion batteries?, J. Power Sources, 189, 1174-1178 (2009). https://doi.org/10.1016/j.jpowsour.2008.12.114
  18. A. Chagnes, A. Diaw, B. Carre, P. Willmann, and D. Lemordant, Imidazolium-organic solvent mixtures as electrolytes for lithium batteries, J. Power Sources, 145, 82-88 (2005). https://doi.org/10.1016/j.jpowsour.2004.12.035
  19. M. Ishikawa, T. Sugimoto, M. Kikuta, E. Ishiko, and M. Kono, Pure ionic liquid electrolytes compatible with a graphitized carbon negative electrode in rechargeable lithium-ion batteries, J. Power Sources, 162, 658-662 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.077
  20. H. Matsumoto, H. Sakaebe, K. Tatsumi, M. Kikuta, E. Ishiko, and M. Kono, Fast cycling of Li/LiCoO2 cell with low-viscosity ionic liquids based on bis(fluorosulfonyl)imide [FSI] (-), J. Power Sources, 160, 1308-1313 (2006). https://doi.org/10.1016/j.jpowsour.2006.02.018
  21. Z. Honghe, J. Kai, T. Abe, and Z. Ogumi, Electrochemical intercalation of lithium into a natural graphite anode in quaternary ammonium-based ionic liquid electrolytes, Carbon, 44, 203-210 (2006). https://doi.org/10.1016/j.carbon.2005.07.038
  22. I. A. Profatilova, N. S. Choi, S. W. Roh, and S. S. Kim, Electrochemical and thermal properties of graphite electrodes with imidazoliumand piperidinium-based ionic liquids, J. Power Sources, 192, 636-643 (2009). https://doi.org/10.1016/j.jpowsour.2009.03.041
  23. B. Garcia, S. Lavallee, G. Perron, C. Michot, and M. Armand, Room temperature molten salts as lithium battery electrolyte, Electrochim. Acta, 49, 4583-4588 (2004). https://doi.org/10.1016/j.electacta.2004.04.041
  24. P. Reale, A. Fernicola, and B. Scrosati, Compatibility of the Py24TFSI-LiTFSI ionic liquid solution with Li4Ti5O12 and LiFePO4 lithium ion battery electrodes, J. Power Sources, 194, 182-189 (2009). https://doi.org/10.1016/j.jpowsour.2009.05.016
  25. L. S. Plashnitsa, E. Kobayashi, S. Okada, and J. I. Yamaki, Symmetric lithium-ion cell based on lithium vanadium fluorophosphate with ionic liquid electrolyte, Electrochim. Acta, 56, 1344-1351 (2011). https://doi.org/10.1016/j.electacta.2010.10.051
  26. A. Lewandowski and A. Swiderska-Mocek, Properties of the lithium and graphite-lithium anodes in N-methyl-N-propylpyrrolidinium bis(trifluoromethanesulfonyl)imide, J. Power Sources, 194, 502-507 (2009). https://doi.org/10.1016/j.jpowsour.2009.05.029
  27. J. Reiter and M. Nadherna, N-Allyl-N-methylpiperidiniumbis(trifluoromethanesulfonyl)imide - A film forming ionic liquid for graphite anode of Li-ion batteries, Electrochim. Acta, 71, 22-26 (2012). https://doi.org/10.1016/j.electacta.2012.03.088
  28. C. C. Nguyen and S. W. Song, Characterization of SEI layer formed on high performance Si-Cu anode in ionic liquid battery electrolyte, Electrochem. Commun., 12, 1593-1595 (2010). https://doi.org/10.1016/j.elecom.2010.09.003
  29. W. Xu, J. C. Flake, B. Kumar, J. Kumar, R. Leese, J. P. Fellner, S. J. Rodrigues, K. M. Abraham, S. Komaba, T. Mikumo, N. Yabuuchi, A. Ogata, H. Yoshida, Y. Yamada, A. I. Bhatt, A. S. Best, J. Huang, A. F. Hollenkamp, Y. S. Jung, A. S. Cavanagh, A. C. Dillon, M. D. Groner, S. M. George, S.-H. Lee, G. P. Pandey, S. A. Hashmi, Y. Kumar, M. Xu, A. Xiao, W. Li, and B. L. Lucht, Composite silicon nanowire anodes for secondary lithium-ion cells, J. Electrochem. Soc., 157, A41-A45 (2010). https://doi.org/10.1149/1.3251341
  30. H. Usui, Y. Yamamoto, K. Yoshiyama, T. Itoh, and H. Sakaguchi, Application of electrolyte using novel ionic liquid to Si thick film anode of Li-ion battery, J. Power Sources, 196, 3911-3915 (2011). https://doi.org/10.1016/j.jpowsour.2010.12.027
  31. J. S. Moreno, Y. Deguchi, S. Panero, B. Scrosati, H. Ohno, E. Simonetti, and G. B. Appetecchi, N-Alkyl-N-ethylpyrrolidinium cation-based ionic liquid electrolytes for safer lithium battery systems, Electrochim. Acta, 191, 624-630 (2016). https://doi.org/10.1016/j.electacta.2016.01.119
  32. A. Fernicola, F. Croce, B. Scrosati, T. Watanabe, and H. Ohno, LiTFSI-BEPyTFSI as an improved ionic liquid electrolyte for rechargeable lithium batteries, J. Power Sources, 174, 342-348 (2007). https://doi.org/10.1016/j.jpowsour.2007.09.013
  33. E. Paillard, Q. Zhou, W. A. Henderson, G. B. Appetecchi, M. Montanino, and S. Passerini, Electrochemical and physicochemical properties of PY14FSI-Based electrolytes with LiFSI, J. Electrochem. Soc., 156, A891-A895 (2009). https://doi.org/10.1149/1.3208048
  34. M. A. Navarra, Ionic liquids as safe electrolyte components for Li-metal and Li-ion batteries, MRS Bulletin, 38, 548-553 (2013). https://doi.org/10.1557/mrs.2013.152
  35. D. J. Yoo, K. J. Kim, and J. W. Choi, The synergistic effect of cation and anion of an ionic liquid additive for lithium metal anodes, Adv. Energy Mater., 8, 1702744(2018). https://doi.org/10.1002/aenm.201702744
  36. T. Jin, Y. Wang, Z. Hui, B. Qie, A. Li, D. Paley, B. Xu, X. Wang, A. Chitu, H. Zhai, T. Gong, and Y. Yang, Nonflammable, low-cost, and fluorine-free solvent for liquid electrolyte of rechargeable lithium metal batteries, ACS Appl. Mater. Interfaces, 11, 17333-17340 (2019). https://doi.org/10.1021/acsami.8b22156
  37. H. Sakaebe, H. Matsumoto, and K. Tatsumi, Discharge-charge properties of Li/LiCoO2 cell using room temperature ionic liquids (RTILs) based on quaternary ammonium cation - Effect of the structure, J. Power Sources, 146, 693-697 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.071
  38. A. Swiderska-Mocek, Electrolyte based on 1-ethyl-3-vinylimidazolium bis(trifluoromethanesulphonyl)imide for Li-ion batteries, Electrochim. Acta, 132, 504-511 (2014). https://doi.org/10.1016/j.electacta.2014.03.185
  39. S. Seki, Y. Kobayashi, H. Miyashiro, Y. Ohno, A. Usami, Y. Mita, M. Watanabe, and N. Terada, Highly reversible lithium metal secondary battery using a room temperature ionic liquid/lithium salt mixture and a surface-coated cathode active material, Chem. Commun., 544-545 (2006).
  40. J. Xu, J. Yang, Y. NuLi, J. Wang, and Z. Zhang, Additive-containing ionic liquid electrolytes for secondary lithium battery, J. Power Sources, 2006, 621-626 (2006).
  41. A. Lewandowski and A. Swiderska-Mocek, Properties of the graphite-lithium anode in N-methyl-N-propylpiperidinium bis(trifluoromethanesulfonyl) imide as an electrolyte, J. Power Sources, 171, 938-943 (2007). https://doi.org/10.1016/j.jpowsour.2007.06.005
  42. V. Borgel, E. Markevich, D. Aurbach, G. Semrau, and M. Schmidt, On the application of ionic liquids for rechargeable Li batteries: High voltage systems, J. Power Sources, 189, 331-336 (2009). https://doi.org/10.1016/j.jpowsour.2008.08.099
  43. N. Birbilis, P. C. Howlett, D. R. MacFarlane, and M. Forsyth, Exploring corrosion protection of Mg via ionic liquid pretreatment, Surface & Coatings Technology, 201, 4496-4504 (2007). https://doi.org/10.1016/j.surfcoat.2006.09.050
  44. J. L. Goldman and A. B. McEwen, EMIIm and EMIBeti on aluminum - Anodic stability dependence on lithium salt and propylene carbonate, Electrochem. Solid-State Lett., 2, 501-503 (1999). https://doi.org/10.1149/1.1390883
  45. T. Sato, T. Maruo, S. Marukane, and K. Takagi, Ionic liquids containing carbonate solvent as electrolytes for lithium ion cells, J. Power Sources, 138, 253-261 (2004). https://doi.org/10.1016/j.jpowsour.2004.06.027
  46. M. Egashira, M. Nakagawa, L. Watanabe, S. Okada, and J. I. Yamaki, Cyano-containing quaternary ammonium-based ionic liquid as a 'co-solvent' for lithium battery electrolyte, J. Power Sources, 146, 685-688 (2005). https://doi.org/10.1016/j.jpowsour.2005.03.069
  47. L. Suo, F. Han, X. Fan, H. Liu, K. Xu, and C. Wang, "Water-in-Salt" electrolytes enable green and safe Li-ion batteries for large scale electric energy storage applications, J. Mater. Chem. A, 4, 6639-6644 (2016). https://doi.org/10.1039/C6TA00451B
  48. Y. Zhang, R. Ye, D. Henkensmeier, R. Hempelmann, and R. Chen, "Water-in-ionic liquid" solutions towards wide electrochemical stability windows for aqueous rechargeable batteries, Electrochim. Acta, 263, 47-52 (2018). https://doi.org/10.1016/j.electacta.2018.01.050
  49. X. Zhang, M. Kar, T. C. Mendes, Y. Wu, and D. R. Macfarlane, Supported Ionic Liquid Gel Membrane electrolytes for flexible supercapacitors, Adv. Energy Mater., DOI:10.1002/aenm.201702702 (2018).
  50. S. Sugata, N. Saito, A. Watanabe, K. Watanabe, J. D. Kim, K. Kitagawa, Y. Suzuki, and I. Honma, Quasi-solid-state lithium batteries using bulk-size transparent Li7La3Zr2O12 electrolytes, Solid State Ionics, 319, 285-290 (2018). https://doi.org/10.1016/j.ssi.2018.02.029
  51. A. R. Mainar, E. Iruin, L. C. Colmenares, A. Kvasha, I. de Meatza, M. Bengoechea, O. Leonet, I. Boyano, Z. Zhang, and J. A. Blazquez, An overview of progress in electrolytes for secondary zinc-air batteries and other storage systems based on zinc, Journal of Energy Storage, 15, 304-328 (2018). https://doi.org/10.1016/j.est.2017.12.004