• 제목/요약/키워드: 로봇 동역학

검색결과 113건 처리시간 0.03초

백스텝핑 방법과 외란관측기법에 의한 미사일 제어시스템의 동역학을 고려한 미사일 유도법칙의 설계 (Design of a Missile Guidance Law via Backstepping and Disturbance Observer Techniques Considering Missile Control System Dynamics)

  • 송성호
    • 제어로봇시스템학회논문지
    • /
    • 제14권1호
    • /
    • pp.88-94
    • /
    • 2008
  • In this paper, a design method of a missile guidance command is presented considering the dynamics of missile control systems. The design of a new guidance command is based on the well-known PNG(propotional navigation guidance) laws. The missile control system dynamics cause the time-delays of the PN guidance command and degrade the performance of original guidance laws which are designed under the assumption of the ideal missile control systems. Using a backstepping method, these time-delay effects can be compensated. In order to implement the guidance command developed by the backstepping procedure, it is required to measure or calculate the successive time-derivatives of the original guidance command, PNG and other kinematic variables such as the relative distance. Instead of directly using the measurements of these variables and their successive derivatives, a simple disturbance observer technique is employed to estimate a guidance command described by them. Using Lyapunov method, the performance of a newly developed guidance command is analyzed against a target maneuvering with a bounded and time-varying acceleration.

기능화된 탄소나노튜브 멤브레인의 이온 선택성에 관한 분자동역학 연구 (Molecular Dynamics Study to Investigate Ion Selectivity of Functionalized Carbon Nanotube Membranes)

  • 석명은
    • 멤브레인
    • /
    • 제28권6호
    • /
    • pp.388-394
    • /
    • 2018
  • 탄소나노튜브(CNT) 기반의 멤브레인은 높은 물 전달률과 직경에 따른 이온 배제율로 해수담수, 물질 정화 등을 위한 분리막으로써의 가능성을 보여 주었다. 이온 선택성은 CNT 기반 멤브레인의 응용 분야를 확대하기 위한 중요한 요소이며, 기능기를 이용하여 이온 선택성의 조절이 가능함이 보고되었다. 다양한 원자가/크기의 이온이 혼합될 경우, 이온-기능기간 작용력 뿐만 아니라 이온-이온간의 작용력, 이온의 크기에 의한 반발력 등이 복합적으로 작용한다. 이에 본 연구에서는 분자동역학 전산모사를 통하여, 상이한 원자가/크기를 가진 이온의 혼합이 기능화된 CNT의 이온 선택성에 미치는 영향을 연구하였다. Potential of Mean Force 계산을 통하여 이온 투과에 대한 자유 에너지 장벽을 계산하였으며, CNT 크기 변화, 전하량 변화를 통하여 이온 선택성과 배제에 영향을 미치는 요소를 분석하였다. 본 연구는 CNT 멤브레인을 이용한 분리막 설계, 생체 이온 전달 채널 모사 등에 유용할 것으로 기대한다.

수직장애물 환경 주행 능력향상을 위한 소형 UGV 플랫폼 설계 (Development of a Small UGV for Vertical Obstacle Negotiation)

  • 김지철;박종원;백주현;유재관;김범수;김수현
    • 한국정밀공학회지
    • /
    • 제28권10호
    • /
    • pp.1166-1173
    • /
    • 2011
  • There have been many researches about SUGV (Small Unmanned Ground Vehicle) mechanism regarding off-road mobility and obstacle negotiation. This paper introduces an analysis of geometry parameters to enhance the vertical obstacle negotiation ability for the SUGV. Moreover, this paper proposes an anti-shock structure analysis of wheels to protect the main body of the SUGV when it falls off a vertical obstacle. Major system geometry parameters will be determined under certain constraints. The constraints and optimization problem for maximizing the ability of vertical obstacle negotiation will be presented and discussed. Dynamic simulation results and experiments with manufactured platform will also be presented to validate the analysis. Several types of wheel materials and structures will be compared to determine the best anti-shock wheel design through FEM (Finite Element Method) simulations.

Unity-ROS 시뮬레이터 기반의 자율운항 시스템 개발 및 검증 (Development of Autonomous Navigation System Using Simulation Based on Unity-ROS)

  • 김기원;방현태;서정화;윤원근
    • 대한조선학회논문집
    • /
    • 제60권6호
    • /
    • pp.406-415
    • /
    • 2023
  • In this study, we focused on developing and verifying ship collision avoidance algorithms using Unity simulator and ROS(Robot Operating System). ROS is used to establish an environment where communication between different operating systems is possible, and a dynamic model of a ship is constructed within Unity simulator. The Lidar data collected in Unity environment is passed to the system based on python through ROS. In the system based on python, control command values were created through the logic of the collision avoidance algorithm using data, and the values were transferred back to Unity to control the movement of the virtual ship. Through the developed simulation system, the reliability of the collision avoidance algorithm of ships with two different forms in an environment similar to the actual physical world was confirmed. As a result, it was confirmed on the simulator that it could be avoided without collision even in an environment with various types of obstacles, and that the avoidance characteristics according to the dynamics of the ship could be analyzed.

실시간 장애물 회피 자동 조작을 위한 차량 동역학 기반의 강화학습 전략 (Reinforcement Learning Strategy for Automatic Control of Real-time Obstacle Avoidance based on Vehicle Dynamics)

  • 강동훈;봉재환;박주영;박신석
    • 로봇학회논문지
    • /
    • 제12권3호
    • /
    • pp.297-305
    • /
    • 2017
  • As the development of autonomous vehicles becomes realistic, many automobile manufacturers and components producers aim to develop 'completely autonomous driving'. ADAS (Advanced Driver Assistance Systems) which has been applied in automobile recently, supports the driver in controlling lane maintenance, speed and direction in a single lane based on limited road environment. Although technologies of obstacles avoidance on the obstacle environment have been developed, they concentrates on simple obstacle avoidances, not considering the control of the actual vehicle in the real situation which makes drivers feel unsafe from the sudden change of the wheel and the speed of the vehicle. In order to develop the 'completely autonomous driving' automobile which perceives the surrounding environment by itself and operates, ability of the vehicle should be enhanced in a way human driver does. In this sense, this paper intends to establish a strategy with which autonomous vehicles behave human-friendly based on vehicle dynamics through the reinforcement learning that is based on Q-learning, a type of machine learning. The obstacle avoidance reinforcement learning proceeded in 5 simulations. The reward rule has been set in the experiment so that the car can learn by itself with recurring events, allowing the experiment to have the similar environment to the one when humans drive. Driving Simulator has been used to verify results of the reinforcement learning. The ultimate goal of this study is to enable autonomous vehicles avoid obstacles in a human-friendly way when obstacles appear in their sight, using controlling methods that have previously been learned in various conditions through the reinforcement learning.

LabVIEW® 기반 6축 수직 다관절 로봇(RS2)의 이종 모션 블랜딩 연구 (Implementation of LabVIEW®-based Joint-Linear Motion Blending on a Lab-manufactured 6-Axis Articulated Robot (RS2))

  • 이동선;정원지;장준호;김만수
    • 한국생산제조학회지
    • /
    • 제22권2호
    • /
    • pp.318-323
    • /
    • 2013
  • For fast and accurate motion of 6-axis articulated robot, more noble motion control strategy is needed. In general, the movement strategy of industrial robots can be divided into two kinds, PTP (Point to Point) and CP (Continuous Path). Recently, industrial robots which should be co-worked with machine tools are increasingly needed for performing various jobs, as well as simple handling or welding. Therefore, in order to cope with high-speed handling of the cooperation of industrial robots with machine tools or other devices, CP should be implemented so as to reduce vibration and noise, as well as decreasing operation time. This paper will realize CP motion (especially joint-linear) blending in 3-dimensional space for a 6-axis articulated (lab-manufactured) robot (called as "RS2") by using LabVIEW$^{(R)}$ (6) programming, based on a parametric interpolation. Another small contribution of this paper is the proposal of motion blending simulation technique based on Recurdyn$^{(R)}$ V7 and Solidworks$^{(R)}$, in order to figure out whether the joint-linear blending motion can generate the stable motion of robot in the sense of velocity magnitude at the end-effector of robot or not. In order to evaluate the performance of joint-linear motion blending, simple PTP (i.e., linear-linear) is also physically implemented on RS2. The implementation results of joint-linear motion blending and PTP are compared in terms of vibration magnitude and travel time by using the vibration testing equipment of Medallion of Zonic$^{(R)}$. It can be confirmed verified that the vibration peak of joint-linear motion blending has been reduced to 1/10, compared to that of PTP.

유연 다물체 동역학 해석을 이용한 4축 이적재 로봇의 주요 부품 선정 (Selecting Main Parts of a Four-Axis Palletizing Robot Through Dynamic Analysis of Rigid-Flexible Multibody Systems)

  • 박일환;고아라;설상석;홍대선
    • 한국기계가공학회지
    • /
    • 제21권2호
    • /
    • pp.54-63
    • /
    • 2022
  • Among the various industrial robots, palletizing robots have received particular attention because of their higher productivity in accordance with technological progress. When designing a palletizing robot, the main components, such as the servo motors and reducers, should be properly selected to ensure its performance. In this study, a practical method for selecting the motors and reducers of a robot was proposed by performing the dynamic analysis of rigid-flexible multibody systems using ANSYS and ADAMS. In the first step, the links and frames were selected based on the structural analysis results obtained from ANSYS. Subsequently, a modal neutral file (MNF) with information on the flexible body was generated from the links and frames using modal analysis through ANSYS and APDL commands. Through a dynamic analysis of the flexible bodies, the specifications of the major components were finally determined by considering the required torque and power. To verify the effectiveness of the proposed method, the analysis results were compared with those of a rigid-body model. The comparison showed that rigid-flexible multibody dynamic analysis is much more useful than rigid body analysis, particularly for movements heavily influenced by gravity.

동역학이 고려된 두 대 로봇의 가속도 타원 해석 (Acceleration ellipsoid of two cooperating robots with the limits of joint torques)

  • 이지홍;이원희
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2003년도 하계종합학술대회 논문집 V
    • /
    • pp.2717-2720
    • /
    • 2003
  • A mathematical framework for deriving acceleration bounds from given joint torque limits of two cooperating robots are described in this paper. Especially when the torque limits are given in 2-norm, the resultant geometrical configuration is ellipsoid(the ellipsoid is often called manipulability ellipsoid in many works). At first, the mathematical derivation starts from the dynamics of both object and robots as well as the kinematics of the robots, and is finally arranged in a form of equation relating joint torques to object acceleration through a complete constraint contact(or “very-soft contact”). To show the usefulness of the proposed method, two examples are included, and especially the case where friction effects the ellipsoid shape is also considered In the example.

  • PDF

로봇팔의 동역학을 고려한 장애물 속에서의 최적 기하학적 경로에 대한 전역 탐색 (Global Search for Optimal Geometric Path amid Obstacles Considering Manipulator Dynamics)

  • 박종근
    • 한국정밀공학회:학술대회논문집
    • /
    • 한국정밀공학회 1995년도 추계학술대회 논문집
    • /
    • pp.1133-1137
    • /
    • 1995
  • This paper presents a numerical method of the global search for an optimal geometric path for a manipulator arm amid obstacles. Finite term quintic B-splines are used to describe an arbitrary point-to-point manipulator motion with fixed moving time. The coefficients of the splines span a linear vector space, a point in which uniquely represents the manipulator motion. All feasible geometric paths are searched by adjusting the seed points of the obstacle models in the penetration growth distances. In the numerical implementation using nonlinear programming, the globally optimal geometric path is obtained for a spatial 3-link(3-revolute joints) manipulator amid several hexahedral obstacles without simplifying any dynamic or geometric models.

  • PDF

모터 동역학을 포함한 이동 로봇의 추종 제어를 위한 동적 표면 제어 (Dynamic surface control for trajectory tracking of mobile robots including motor dynamics)

  • 박봉석;최윤호;박진배
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2008년도 제39회 하계학술대회
    • /
    • pp.1685-1686
    • /
    • 2008
  • Almost all existing controllers for nonholonomic mobile robots are designed without considering the motor dynamics. This is because the presence of the motor dynamics increases the complexity of the system dynamics, and makes difficult the design of the controller. In this paper, we propose a simple controller for trajectory tracking of mobile robots including motor dynamics. For the simple controller design, the dynamic surface control methodology is applied and extended to multi-input multi-output systems (i.e., mobile robots) that the number of inputs and outputs are different. Finally, simulation results demonstrate the effectiveness of the proposed controller.

  • PDF