DOI QR코드

DOI QR Code

Molecular Dynamics Study to Investigate Ion Selectivity of Functionalized Carbon Nanotube Membranes

기능화된 탄소나노튜브 멤브레인의 이온 선택성에 관한 분자동역학 연구

  • Suk, Myung Eun (Department of Mechanical Engineering, IT Convergence College of Components and Materials Engineering, Dong-eui University)
  • 석명은 (동의대학교 IT융합부품소재공과대학 기계자동차로봇부품공학부 기계공학과)
  • Received : 2018.11.08
  • Accepted : 2018.12.19
  • Published : 2018.12.31

Abstract

Carbon nanotube (CNT) based membranes are promising candidates for separation membranes by showing high water transport rate and ion rejection rate according to their radii. The ion selectivity is an important factor to discover the full potential of CNT membranes, and it is affected by the functionalization of CNTs. With multivalent/size ion mixtures, the ion selectivity is affected by not only ion-functional groups interaction but also ion-ion interactions and ion size exclusion in a complex manner. In this study, molecular dynamics simulations are performed to study the ion selectivity of functionalized carbon nanotubes when multivalent/size ions are contained. The permeation energy barriers are calculated by plotting potential of mean force profiles, and various factors, such as CNT size and partial charges, affecting ion selectivity are investigated. The results presented here will be useful for designing CNT membranes for ion separation, biomimetic ion channels, etc.

탄소나노튜브(CNT) 기반의 멤브레인은 높은 물 전달률과 직경에 따른 이온 배제율로 해수담수, 물질 정화 등을 위한 분리막으로써의 가능성을 보여 주었다. 이온 선택성은 CNT 기반 멤브레인의 응용 분야를 확대하기 위한 중요한 요소이며, 기능기를 이용하여 이온 선택성의 조절이 가능함이 보고되었다. 다양한 원자가/크기의 이온이 혼합될 경우, 이온-기능기간 작용력 뿐만 아니라 이온-이온간의 작용력, 이온의 크기에 의한 반발력 등이 복합적으로 작용한다. 이에 본 연구에서는 분자동역학 전산모사를 통하여, 상이한 원자가/크기를 가진 이온의 혼합이 기능화된 CNT의 이온 선택성에 미치는 영향을 연구하였다. Potential of Mean Force 계산을 통하여 이온 투과에 대한 자유 에너지 장벽을 계산하였으며, CNT 크기 변화, 전하량 변화를 통하여 이온 선택성과 배제에 영향을 미치는 요소를 분석하였다. 본 연구는 CNT 멤브레인을 이용한 분리막 설계, 생체 이온 전달 채널 모사 등에 유용할 것으로 기대한다.

Keywords

References

  1. B. Corry, "Designing carbon nanotube membranes for efficient water desalination", J. Phys. Chem. B., 112, 1427 (2008). https://doi.org/10.1021/jp709845u
  2. F. Fornasiero, H. G. Park, J. K. Holt, M. Stadermann, P. Grigoropoulos, A. Noy, and O. Bakajin, "Ion exclusion by sub-2-nm carbon nanotube pores", Proc. Natl. Acad. Sci., 105, 17250 (2008). https://doi.org/10.1073/pnas.0710437105
  3. J. K. Holt, H. G. Park, Y. Wang, M. Stadermann, A. B. Artyukhin, C. P. Grigoropoulos, A. Noy, and O. Bakajin, "Fast mass transport through sub-2-nanometer carbon nanotubes", Science, 312, 1034 (2006). https://doi.org/10.1126/science.1126298
  4. M. Majumder, N. Chopra, R. Andrews, and B. J. Hinds, "Enhanced flow in carbon nanotubes", Nature, 438, 44 (2005). https://doi.org/10.1038/438044a
  5. H. W. Yoon, H. D. Lee, and H. B. Park, "Gas transport behavior of modified carbon nanotubes/ hydrogel composite membranes", Membr. J., 23, 5 (2013).
  6. M. E. Suk and N. R. Aluru, "Fast reverse osmosis using boron nitride and carbon nanotubes", Appl. Phys. Lett., 92, 133120 (2008). https://doi.org/10.1063/1.2907333
  7. R. Das, M. E. Ali, S. B. A. Hamid, S. Ramakrishna, and Z. Z. Chowdhury, "Carbon nanotube membranes for water purification: A bright future in water desalination", Desalination, 336, 97 (2014). https://doi.org/10.1016/j.desal.2013.12.026
  8. T. Lee, H. Lee, and H. Park, "Current research trends in polyamide based nanocomposite membranes for desalination", Membr. J., 26, 5 (2016).
  9. M. Majumder, N. Chopra, and B. J. Hinds, "Effect of tip functionalization on transport through vertically oriented carbon nanotube membranes", J. Am. Chem. Soc., 127, 9062 (2005). https://doi.org/10.1021/ja043013b
  10. D. Kim and M. Kang, "Development and applications of pore-filled ion exchange membranes", Membr. J., 28, 5 (2018).
  11. H. Amiri, K. L. Shepard, C. Nuckolls, and R. H. Sanchez, "Single-walled carbon nanotubes: Mimics of biological ion channels", Nano Lett., 17, 1204 (2017). https://doi.org/10.1021/acs.nanolett.6b04967
  12. P. Mark and L. Nilson, "Structure and dynamics of the TIP3P, SPC, and SPC/E water models at 298 K", J. Phys. Chem. A., 105, 9954 (2001). https://doi.org/10.1021/jp003020w
  13. G. Chen, Y. Guo, N. Karasawa, and W. A. Goddard, "Electron-phonon intreactions and superconductivity in K3C60", Phys. Rev. B., 48, 13959 (1993). https://doi.org/10.1103/PhysRevB.48.13959
  14. M. Vogele, J. Kofinger, and G. Hummer, "Molecular dynamics simulations of carbon nanotube porins in lipid bilayers", Faraday Discuss., 209, 341 (2018). https://doi.org/10.1039/C8FD00011E
  15. T. W. Allen, O. S. Andersen, and B. Roux, "Molecular dynamics-potential of mean force calculations as a tool for understanding ion permeation and selectivity in narrow channels", Biophys. Chem., 124, 3 (2006).
  16. J. S. Hub and B. L. de Groot, "Mechanism of selectivity in aquaporin and aqaglyceroprins", Proc. Natl. Acad. Sci., 105, 1198 (2008). https://doi.org/10.1073/pnas.0707662104