• Title/Summary/Keyword: 레이저 스캔

Search Result 120, Processing Time 0.026 seconds

Application of the Homogenization Analysis to Calculation of a Permeability Coefficient (투수계수 산정을 위한 균질화 해석법의 적응)

  • 채병곤
    • Journal of Soil and Groundwater Environment
    • /
    • v.9 no.1
    • /
    • pp.79-86
    • /
    • 2004
  • Hydraulic conductivity along rock fracture is mainly dependent on fracture geometries such as orientation, aperture, roughness and connectivity. Therefore, it needs to consider fracture geometries sufficiently on a fracture model for a numerical analysis to calculate permeability coefficient in a fracture. This study performed new type of numerical analysis using a homogenization analysis method to calculate permeability coefficient accurately along single fractures with several fracture models that were considered fracture geometries as much as possible. First of all, fracture roughness and aperture variation due to normal stress applied on a fracture were directly measured under a confocal laser scaning microscope (CLSM). The acquired geometric data were used as input data to construct fracture models for the homogenization analysis (HA). Using the constructed fracture models, the homogenization analysis method can compute permeability coefficient with consideration of material properties both in microscale and in macroscale. The HA is a new type of perturbation theory developed to characterize the behavior of a micro inhomogeneous material with a periodic microstructure. It calculates micro scale permeability coefficient at homogeneous microscale, and then, computes a homogenized permeability coefficient (C-permeability coefficient) at macro scale. Therefore, it is possible to analyze accurate characteristics of permeability reflected with local effect of facture geometry. Several computations of the HA were conducted to prove validity of the HA results compared with the empirical equations of permeability in the previous studies using the constructed 2-D fracture models. The model can be classified into a parallel plate model that has fracture roughness and identical aperture along a fracture. According to the computation results, the conventional C-permeability coefficients have values in the range of the same order or difference of one order from the permeability coefficients calculated by an empirical equation. It means that the HA result is valid to calculate permeability coefficient along a fracture. However, it should be noted that C-permeability coefficient is more accurate result than the preexisting equations of permeability calculation, because the HA considers permeability characteristics of locally inhomogeneous fracture geometries and material properties both in microscale and macroscale.

THE PALATAL MORPHOLOGY OF THE CHILDREN WITH CLASS II DIV.1 MALOCCLUSION IN MIXED DENTITION : A STUDY USING THREE-DIMENSIONAL LASER SCANNER (혼합치열기 II급 1류 부정교합 어린이의 구개형태 : 3차원 레이저 스캐너를 이용한 연구)

  • Yang, Jung-Hyun;Lee, Sang-Hoon;Hahn, Se-Hyun;Kim, Chong-Chul
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.32 no.2
    • /
    • pp.270-277
    • /
    • 2005
  • The purpose of this study was to clarify the palatal volume and anterior palatal slope of the children with class II div.1 malocclusion and normal occlusion in mixed dentition(Hellman dental age III A) using three-dimensional laser scanner. Samples were consisted of 31 children with skeletal class II div.1 malocclusion in mixed dentition and 29 children with normal occlusion and profile among the contestants in 2000-2004 Healthy Dentition Contest in Seoul. Totally 60 maxillary study model were taken. Each cast was scanned by three-dimensional laser scanner (Breuckmann opto-TOP HE, INUS, Korea) and shaped into the three-dimension image by Rapidform 2004 program(INUS, Korea). And the palatal volume and anterior palatal slope of each cast were calculated by Rapidform 2004 program(INUS, Korea). The values were statistically compared and evaluated by independent samples t-test with 95% of significance level. The results were as follows: 1. Palatal volume was significantly lesser in children with class II div.1 malocclusion than that of normal occlusion in mixed dentition(p<0.05). 2. No significant difference in the anterior palatal slope and palatal height was found between the children with class II div.1 malocclusion and normal occlusion in mixed dentition(p>0.05). 3. Palatal length was significantly greater in children with class II div.1 malocclusion than that of normal occlusion in mixed dentition(p<0.01). 4. Intercanine and intermolar width were significantly lesser in children with class II div.1 malocclusion than those of normal occlusion in mixed dentition(respectively p<0.05 and p<0.01).

  • PDF

CHARACTERISTICS OF THE PALATAL MORPHOLOGY OF THE CHILDREN WITH CROSSBITE IN MIXED DENTITION BY 3-DIMENSIONAL LASER SCANNER (3차원 스캐너를 이용한 혼합치열기 반대교합아동의 구개형태에 관한 연구)

  • Kim, Dong-Won;Park, Ho-Won
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.30 no.1
    • /
    • pp.132-142
    • /
    • 2003
  • This study is performed to investigate the characteristics of the palatal morphology of the children with anterior crossbite in Hellman dental age IIIA by 3-dimensional laser scanner. Totally 40 study casts were taken; 20 were from children with crossbite and another 20 were from normal occlusion as a control. Each cast was scanned by 3 dimension laser scanner and shaped by the 3 dimension image by rapidform 2000 program(INUS, Korea). And finally it was calculated by Rhino 3D program(Rhinoceros, USA). The intercanine, intermolar cross-sectioned transverse plane and sagittal plane were measured. Due to the variations in palatal morphology, each group was standardized into 25mm, 35mm, 35mm. By sectioning standardized curves of the Palatal morphology per 1mm, the palatal depth of each point was calculated. Through these complex methods, the mean curves of the palatal morphology could be obtained and the values were statistically compared and evaluated by T-test with 95% of significance level. The results were as follows: 1. In the intercanine cross-sectioned transverse plane, the mean curve of palatal morphology of crossbite group was flatter V shape than that of control group, however, there was no statistical significance was found between two groups(P>0.05). 2. In the intermolar cross-sectioned transverse plane, the mean curve of palatal morphology of crossbite was deeper all over the area than that of control group, and the statistical significance was found in the middle area from point 8 to 21(P<0.05). 3. In the sagittal plane, the mean curve of palatal morphology of crossbite group was more deepening as approaching posteriorly than that of control group, and the statistical significance was found in all over the area(P<0.01).

  • PDF

The Study to Improve Re-topology Efficiency Between Analyzing Software and Making Examples of Different Types of 3D Models (리토폴로지 효율성 향상을 위한 소프트웨어의 비교분석 및 유형별 3D 모델링 사례 제작)

  • Yan, Yong
    • The Journal of the Korea Contents Association
    • /
    • v.20 no.6
    • /
    • pp.9-25
    • /
    • 2020
  • As laser scan and photogrammetry are extensively applied to 3D modeling, the Retopology has become a critically important part in the 3D modeling process. However, abundant time would be wasted if the wrong method for retopology is employed. This paper aims to select the most suitable method and software for retopology for different types of models so as to increase the effectiveness of 3D modeling. In this paper, retopology is divided into three types according to the existed software for retopology in the market: manual, automatic and wrapping type, all of which are investigated by their characteristics of retopology and software in which they are applied individually. Then case production is employed on Static Mesh Skeletal Mesh and Hard Surface Modeling by the above mentioned three methods. The advantages and disadvantages of the software in which the above three methods can be applied are summed up, and the manual type produces good results, the automatic type is fast, and the wrapping type requires a pre-existing base mesh and the most suitable method for retopology for each type of 3D models is demonstrated. This paper provides reference for retopology and increases the effectiveness of 3D modeling.

High Performance Object Recognition with Application of the Size and Rotational Invariant Feature of the Fourier Descriptor to the 3D Information of Edges (푸리에 표현자의 크기와 회전 불변 특징을 에지에 대한 3차원 정보에 응용한 고효율의 물체 인식)

  • Wang, Shi;Chen, Hongxin;I, Jun-Ho;Lin, Haiping;Kim, Hyong-Suk;Kim, Jong-Man
    • Journal of the Institute of Electronics Engineers of Korea CI
    • /
    • v.45 no.6
    • /
    • pp.170-178
    • /
    • 2008
  • A high performance object recognition algorithm using Fourier description of the 3D information of the objects is proposed. Object boundaries contain sufficient information for recognition in most of objects. However, it is not well utilized as the key solution of the object recognition since obtaining the accurate boundary information is not easy. Also, object boundaries vary highly depending on the size or orientation of object. The proposed object recognition algorithm is based on 1) the accurate object boundaries extracted from the 3D shape which is obtained by the laser scan device, and 2) reduction of the required database using the size and rotational invariant feature of the Fourier Descriptor. Such Fourier information is compared with the database and the recognition is done by selecting the best matching object. The experiments have been done on the rich database of MPEG 7 Part B.

Color Laser Printer Identification through Discrete Wavelet Transform and Gray Level Co-occurrence Matrix (이산 웨이블릿 변환과 명암도 동시발생 행렬을 이용한 컬러 레이저프린터 판별 알고리즘)

  • Baek, Ji-Yeoun;Lee, Heung-Su;Kong, Seung-Gyu;Choi, Jung-Ho;Yang, Yeon-Mo;Lee, Hae-Yeoun
    • The KIPS Transactions:PartB
    • /
    • v.17B no.3
    • /
    • pp.197-206
    • /
    • 2010
  • High-quality and low-price digital printing devices are nowadays abused to print or forge official documents and bills. Identifying color laser printers will be a step for media forensics. This paper presents a new method to identify color laser printers with printed color images. Since different printer companies use different manufactural systems, printed documents from different printers have little difference in visual. Analyzing this artifact, we can identify the color laser printers. First, high-frequency components of images are extracted from original images with discrete wavelet transform. After calculating the gray-level co-occurrence matrix of the components, we extract some statistical features. Then, these features are applied to train and classify the support vector machine for identifying the color laser printer. In the experiment, total 2,597 images of 7 printers (HP, Canon, Xerox DCC400, Xerox DCC450, Xerox DCC5560, Xerox DCC6540, Konica), are tested to classify the color laser printer. The results prove that the presented identification method performs well with 96.9% accuracy.

Significance of Three-Dimensional Digital Documentation and Establishment of Monitoring Basic Data for the Sacred Bell of Great King Seongdeok (성덕대왕신종의 3차원 디지털 기록화 의미와 모니터링 기초자료 구축)

  • Jo, Younghoon;Song, Hyeongrok;Lee, Sungeun
    • Conservation Science in Museum
    • /
    • v.24
    • /
    • pp.55-74
    • /
    • 2020
  • The Sacred Bell of Great King Seongdeok is required digital precision recording of conservation conditions because of corrosion and partial abrasion of its patterns and inscriptions. Therefore, this study performed digital documentation of the bell using four types of scanning and unmanned aerial vehicle (UAV) photogrammetry technologies, and performed the various shape analyses through image processing. The modeling results of terrestrial laser scanning and UAV photogrammetry were merged and utilized as basic material for monitoring earthquake-induced structural deformation because these techniques can construct mutual spatial relationships between the bell and its tower. Additionally, precision scanning at a resolution four to nine times higher than that of the previous study provided highly valuable information, making it possible to visualize the patterns and inscriptions of the bell. Moreover, they are well-suited as basic data for identifying surface conservation conditions. To actively apply three-dimensional scanning results to the conservation of the original bell, the time and position of any changes in shape need to be established by further scans in the short-term. If no change in shape is detected by short-term monitoring, the monitoring should continue in medium- and long-term intervals.

A Study on the Development Methodology of Intelligent Medical Devices Utilizing KANO-QFD Model (지능형 메디컬 기기 개발을 위한 KANO-QFD 모델 제안: AI 기반 탈모관리 기기 중심으로)

  • Kim, Yechan;Choi, Kwangeun;Chung, Doohee
    • Journal of Intelligence and Information Systems
    • /
    • v.28 no.1
    • /
    • pp.217-242
    • /
    • 2022
  • With the launch of Artificial Intelligence(AI)-based intelligent products on the market, innovative changes are taking place not only in business but also in consumers' daily lives. Intelligent products have the potential to realize technology differentiation and increase market competitiveness through advanced functions of artificial intelligence. However, there is no new product development methodology that can sufficiently reflect the characteristics of artificial intelligence for the purpose of developing intelligent products with high market acceptance. This study proposes a KANO-QFD integrated model as a methodology for intelligent product development. As a specific example of the empirical analysis, the types of consumer requirements for hair loss prediction and treatment device were classified, and the relative importance and priority of engineering characteristics were derived to suggest the direction of intelligent medical product development. As a result of a survey of 130 consumers, accurate prediction of future hair loss progress, future hair loss and improved future after treatment realized and viewed on a smartphone, sophisticated design, and treatment using laser and LED combined light energy were realized as attractive quality factors among the KANO categories. As a result of the analysis based on House of Quality of QFD, learning data for hair loss diagnosis and prediction, micro camera resolution for scalp scan, hair loss type classification model, customized personal account management, and hair loss progress diagnosis model were derived. This study is significant in that it presented directions for the development of artificial intelligence-based intelligent medical product that were not previously preceded.

A MORPHOMETRIC STUDY OF THE MAXILLARY PRIMARY FIRST MOLARS USING THREE-DIMENSIONAL SCANNER (3차원 스캐너를 이용한 상악 제1유구치 치관의 크기와 형태에 관한 연구)

  • Lee, Jong-Beom;Kim, Chong-Chul;Hahn, Se-Hyun;Lee, Sang-Hoon
    • Journal of the korean academy of Pediatric Dentistry
    • /
    • v.33 no.4
    • /
    • pp.643-652
    • /
    • 2006
  • The purpose of this study was to elucidate the size and morphologic characteristics of maxillary primary first molars in Korean children using three-dimensional laser scanner and compare three-dimensional image with preformed stainless steel crown. Scanned three-dimensional images of dental cast taken from 132 children(male 62, female 70) by three-dimensional laser scanner(Breuckmann opto-Top HE100, INUS, Korea) were used. Mesiodistal diameter, buccolingual diameter, occlusogingival height and crown shape of each image were calculated by Rapidform 2004 program(INUS, Korea). The values were statistically compared by independent samples t-test with 95% of significant level. The results were as follows : 1. No significant difference in crown size was found between left and right maxillay primary first molar(p>0.05). 2, Significant difference in mesiodistal diameter, buccolingual diameter, buccal occlusogingival height was found between male and female (p<0.05), and crown size of male was bigger than that of female. 3. Average image of maxillay primary first molar was shaped three-dimensionally and measured. In comparison with 3M stainless steel crown, this image was similar with No.4 or No.5 SS crown in male, No.4 in female. In comparison with ILSUNG SS crown, this image was similar with No.5 in male, No.4 in female. 4 Mesiolingual line angle area, distolingual line angle area and buccogingival ridge were more obvious in average image than 3M stainless steel crown. ILSUNG SS crown was more square and had longer mesiodistal diameter than average 3D image.

  • PDF

Comparison of relative fitness between zirconia single coping and 3-unit fixed partial dentures (FPDs) manufactured by dental CAD/CAM system (치과 캐드/캠 시스템으로 제작된 지르코니아 single 코핑과 3-unit 구조물의 상대적 적합도 비교)

  • Lee, Wan-Sun;Park, Jong-Kyoung;Kim, Wook-Tae
    • Journal of Dental Rehabilitation and Applied Science
    • /
    • v.30 no.1
    • /
    • pp.16-22
    • /
    • 2014
  • Purpose: The purpose of this study was to assess the marginal and mesial fitness of zirconia single copings and 3-unit fixed partial dentures (FPDs) manufactured with an identical model. Materials and Methods: An epoxy model in which the maxillary right 2nd premolar is lost and maxillary 1st premolar and 2nd molar are formed as abutments was manufactured and scanned by using a laser scanner. A ten units of zirconia single copings were manufactured for maxillary 1st premolar and 2nd molar, respectively and the same number of 3-unit FPDs were manufactured. For the measurements of fitness, the manufactured silicone replicas were divided into four parts and the fitness were measured by digital microscope at measurement points (P1, P2, P3, P4 and P5) of each plane. The measured gaps were classified into three categories: marginal gap (MG, P1), axial gap (AG, average of P2 and P3), occlusal gap (OG, average of P4 and P5). Results: The ranges of MG, AG and OG for single copings were 18.47 - 40.54 ${\mu}m$, 39.73 - 73.61 ${\mu}m$ and 116.90 - 134.69 ${\mu}m$, respectively. The ranges of MG, AG and OG for 3-unit FPDs were 45.95 - 87.44 ${\mu}m$, 23.78 - 57.00 ${\mu}m$ and 99.89 - 131.06 ${\mu}m$, respectively. Conclusion: The result of the study shows that the MGs for 3-unit FPDs were higher than those of single copings, though they are within the range of clinical acceptance, indicating that the use of more homogeneous zirconia block and modification of sintering processes are needed to ensure the prevention of increase of gap in 3-unit FPDs.