High Performance Object Recognition with Application of the Size and Rotational Invariant Feature of the Fourier Descriptor to the 3D Information of Edges

푸리에 표현자의 크기와 회전 불변 특징을 에지에 대한 3차원 정보에 응용한 고효율의 물체 인식

  • Wang, Shi (Div. of Electronic & Information Engineering, Chonbuk National University) ;
  • Chen, Hongxin (Div. of Electronic & Information Engineering, Chonbuk National University) ;
  • I, Jun-Ho (Div. of Electronic & Information Engineering, Chonbuk National University) ;
  • Lin, Haiping (Div. of Electronic & Information Engineering, Chonbuk National University) ;
  • Kim, Hyong-Suk (Div. of Electronic & Information Engineering, Chonbuk National University) ;
  • Kim, Jong-Man (Div. of Electronic & Information Engineering, Chonbuk National University)
  • 왕실 (전북대학교 전자정보공학부) ;
  • 진홍신 (전북대학교 전자정보공학부) ;
  • 이준호 (전북대학교 전자정보공학부) ;
  • 임해평 (전북대학교 전자정보공학부) ;
  • 김형석 (전북대학교 전자정보공학부) ;
  • 김종만 (전북대학교 전자정보공학부)
  • Published : 2008.11.25

Abstract

A high performance object recognition algorithm using Fourier description of the 3D information of the objects is proposed. Object boundaries contain sufficient information for recognition in most of objects. However, it is not well utilized as the key solution of the object recognition since obtaining the accurate boundary information is not easy. Also, object boundaries vary highly depending on the size or orientation of object. The proposed object recognition algorithm is based on 1) the accurate object boundaries extracted from the 3D shape which is obtained by the laser scan device, and 2) reduction of the required database using the size and rotational invariant feature of the Fourier Descriptor. Such Fourier information is compared with the database and the recognition is done by selecting the best matching object. The experiments have been done on the rich database of MPEG 7 Part B.

3 차원 정보로부터 정확한 에지를 추출하고 푸리 변환하여 물체를 인식할 수 있는 고 효율의 물체 인식방법을 제안하였다. 물체의 윤곽은 인식에 유용한 많은 정보를 포함하고 있지만, 정확한 윤곽정보를 얻기가 어려우며, 정확한 윤곽정보를 얻었다고 하더라도 물체의 크기나 방향 마다 윤곽이 달라지기 때문에 물체 인식에 획기적 대안으로 활용되지 못하고 있다. 제안한 물체 인식 알고리즘은 1) 레이저 스캔 디바이스를 사용하여 얻는 3 차원 물체정보로부터 정밀한 물체 윤곽을 획득하고 2) 크기 및 회전 불변한 푸리에 표시 자를 이용하여 윤곽을 표현함으로써, 필요 데이터 베이스의 크기를 대폭 줄인다. 이렇게 얻어진 물체에 대한 푸리에 표식자 정보는 미리 준비된 푸리에 표식자 데이터 베이스로부터 최적 정합되는 물체를 찾아 인식한다. 이 알고리즘은 MPEG7 Part B의 방대한 영상 데이터 베이스를 대상으로 실험하였으며, 그에 대한 결과를 논문에 포함시켰다.

Keywords

References

  1. E.R. Davies, Machine Vision : Theory, Algorithms, Practicalities, Academic Press, 1997
  2. P.J. van Otterloo, A Contour-Oriented Approach to Shape Analysis, Prentice-Hall International Ltd, 1991
  3. Quang Minh Tieng and W. W. Boles, "Recognition of 2D Object Contours Using the Wavelet Transform Zero-Crossing Representation," IEEE Trans. on PAMI 19(8), pp. 910-916, Aug. 1997 https://doi.org/10.1109/34.608294
  4. Hee Soo Yang, Sang Uk Lee, and Kyoung MuLee, "Recognition of 2D Object Contours Using Starting-Point-Independent Wavelet Coefficient Matching," Journal of Visual Communication and Image Representation, vol. 9, no. 2 , pp. 171-181, Jun. 1998 https://doi.org/10.1006/jvci.1998.0384
  5. Hyongsuk Kim, Chun-Shin Lin, Chang-Bae Yoon, Hye-Jeong Lee, and Hongrak Son, "A Depth Measurement System with the Active Vision of the Striped Lighting and Rotating Mirror,"Lecture Note in Computer Sciences: Progress in Pattern Recognition, Image Analysis and Applications, vol. 3287, pp. 108-115, Oct. 2004.
  6. Hyongsuk Kim, Chun-Shin Lin, Jaehong Song, and Heesung Chae, "Distance Measurement Using a Single Camera with a Rotating Mirror," International Journal of Control, Automation, and Systems, vol. 3, no. 4, pp. 542-551, Dec. 2005
  7. Hannu Kauppinen, Tapio Seppanen and Matti Pietikainen, "An Experimental Comparison of Autoregressive and Fourier-Based Descriptors in 2D Shape Classification," IEEE Trans. on Pattern Analysis and Machine Intelligence, vol. 17, no. 2, pp. 201-207, 1995 https://doi.org/10.1109/34.368168
  8. Charles T. Zahn and Ralph Z. Roskies, "Fourier Descriptors for Plane closed Curves," IEEE Trans. on Computer, vol. 21, pp. 269-281, 1972 https://doi.org/10.1109/TC.1972.5008949
  9. Eric Persoon and King-sun Fu, "Shape Discrimination Using Fourier Descriptors," IEEE Trans. on Systems, Man and Cybernetics, vol. Mar, pp. 170-179, 1977
  10. Chung-Lin Huang and Dai-Hwa Huang, "A Content-based image retrieval system," Image and Vision Computing, vol. 16, no. 3, pp. 149-163, 1998 https://doi.org/10.1016/S0262-8856(97)00062-0
  11. Atul Sajjanhar. A Technique for Similarity Retrieval of Shapes. Master thesis, Monash University, Australia, 1997
  12. Bin Wang and Chaojian Shi, "A Novel Fourier Descriptor for Shape Retrieval," Lecture Note in Computer Sciences: Fuzzy Systems and Knowledge Discovery, vol. 4223, pp. 822-825, Sep. 2006 https://doi.org/10.1007/11881599_101
  13. W. Niblack, R. Barber, W. Equitz, M. Flickner, E. Glasman, D. Petkovic, P. Yanker, C. Faloutsos, G. Taubin, The QBIC project: querying image by content using color, texture and shape, in: Proceedings of SPIE Storage and Retrieval for Image and Video Databases, vol. 1908, pp. 173-187, 1993
  14. C.T. Zahn and R.Z. Roskies, Fourier descriptors for plane closed curves, IEEE Transactions on Computer c-21, pp. 269-281, 1972 https://doi.org/10.1109/TC.1972.5008949
  15. Q.M. Tieng and W.W. Boles, Recognition of 2D object contours using the wavelet transform zero-crossing representation, IEEE Transactions on PAMI 19, Aug. 1997
  16. W.-Y. Kim and Y.-S. Kim, A region-based shape descriptor using Zernike moments, Signal Processing: Image Communication 16, pp. 95-102, 2000 https://doi.org/10.1016/S0923-5965(00)00019-9
  17. K. L. Kashyap and R. Chellappa, Stochastic models for closed boundary analysis: representation and reconstruction, IEEE Transactions on Information Theory 27, pp. 627-637, 1981 https://doi.org/10.1109/TIT.1981.1056390
  18. B. Dorner, Hand Shape Identification and Tracking for Sign Language Interpretation, IJCAI Workshop on Looking at People, 1993
  19. Kindratenko V.V, On Using Functions to Describe the Shape, Journal of Mathematical Imaging and Vision, Volume 18,Number 3, pp. 225-245(21), May 2003 https://doi.org/10.1023/A:1022843426320
  20. I. Kunttu, L. Lepisto, and A. Visa, Efficient Fourier shape descriptor for industrial defect images using wavelets, Optical Engineering, vol. 44, 2005