• Title/Summary/Keyword: 레이저 비파괴검사

Search Result 67, Processing Time 0.03 seconds

Evaluation of Surface-Breaking Crack Based on Laser-Generated Ultrasonics and Wavelet Transform (레이저 초음파와 Wavelet변환을 이용한 재료표면균열 평가)

  • Lee, Min-Rae;Choi, Sang-Woo;Lee, Joon-Hyun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.21 no.2
    • /
    • pp.152-162
    • /
    • 2001
  • Laser-generated ultrasonic technique which is one of the reliable nondestructive evaluation techniques has been applied to evaluate the integrity of structures by analyzing the characteristics of signal obtained from surface crack. Therefore, the signal analysis of the laser-generated ultrasonics is absolutely necessary for the accurate and quantitative estimation of the surface defects. In this study, one-sided measurement by laser-generated ultrasonic has been applied to evaluate the depth of the surface-breaking crack in the materials. However, since the ultrasonic waveform excited by pulse laser is very difficult to distinguish the defect signals, it is necessary to consider the signal analyses of the transient waveform. Wavelet Transform(WT) is a powerful tool for processing transient signals with temporally varying spectra that helps to resolve high and low frequency transient components effectively. In this paper, the analyses of the surface-breaking crack of the ultrasonic signal excited by pulse laser are presented by employing the WT analyses.

  • PDF

Propagation of Bulk Longitudinal Waves in Thin Films Using Laser Ultrasonics (레이저 초음파를 이용한 체적종파의 박막 내 전파특성 연구)

  • Kim, Yun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.36 no.4
    • /
    • pp.266-272
    • /
    • 2016
  • This paper presents the investigation of the propagation behavior of bulk longitudinal waves generated by an ultrafast laser system in thin films. A train of femtosecond laser pulses was focused onto the surface of a 150-nm thick metallic (chromium or aluminum) film on a silicon substrate to excite elastic waves, and the change in thermoreflectance at the spot was monitored to detect the arrival of echoes from the film/substrate interface. The experimental results show that the film material characteristics such as the wave velocity and Young's modulus can be evaluated through curve-fitting in numerical solutions. The material properties of nanoscale thin films are difficult to measure using conventional techniques. Therefore, this research provides an effective method for the nondestructive characterization of nanomaterials.

Application of Laser Ultrasonic Technique for Nondestructive Evaluation of Wall Thinning in Pipe (배관부 감육 손상의 비파괴 평가를 위한 레이저 초음파 기술 적용)

  • Hong, Kyung-Min;Kang, Young-June;Park, Nak-Kyu;Yoon, Suk-Bum
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.33 no.4
    • /
    • pp.361-367
    • /
    • 2013
  • Many of the nuclear power plant pipe is used in high temperature and high pressure environment. Wall thinning frequently caused by the corrosion. These wall thinning in pipe is expected gradually increase as nuclear power become superannuated. Therefore there is need to evaluate wall thinning in pipe and corrosion defect by non-destructive method to prevent the accident of the nuclear power facility due to pipe corrosion. Especially for real-time assessment of the wall thinning that occurs in nuclear power plant pipe, the laser ultrasonic technology can be measured even in hard-to-reach areas, beyond the limits of earlier existing contact methods. In this study, the optical method using laser was applied for non-destructive and non-contact evaluation. Ultrasonic signals was acquired through generating ultrasonic by pulse laser and using laser interferometer. First the ultrasonic signal was detected in no wall thinning in pipe, then a longitudinal wave velocity was measured inside of pipe. Artificial wall thinning specimen compared to 20, 30, 40 and 50% of thickness of the pipe was produced and the longitudinal wave velocity was measured. It was possible to evaluate quantitatively the wall thinning area(internal defect depth) cause it was able to calculate the thickness of each specimen using measured longitudinal wave velocity.

Development and Application of Photoacoustic Microscope using Accelerometer (가속도센서를 이용한 광음향현미경의 제작과 응용)

  • Kim, D.H.;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.14 no.4
    • /
    • pp.219-227
    • /
    • 1995
  • A two-dimensional photoacoustic microscope utilizing photoacoustic signals generated by periodic heating of specimen surface with Argon ion laser and measured by accelerometer has been developed. Several aluminum specimens with various defects have been examined, characteristics of the microscope have been evaluated and optimal experimental conditions have been determined by examining the dependence on several experimental conditions including the modulation frequency and the beam width of laser.

  • PDF

Bending Fatigue Characterization of Al6061 Alloy by Acoustic Nonlinearity of Narrow Band Laser-Generated Surface Wave (협대역 레이저 여기 표면파의 음향버선형성을 이용한 A16061 합금의 굽힘피로손상 평가)

  • Nam, Tae-Hyung;Choi, Sung-Ho;Jhang, Kyung-Young;Kim, Chung-Seok;Lee, Tae-Hun
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.30 no.2
    • /
    • pp.139-145
    • /
    • 2010
  • Bending fatigue of aluminium alloy was characterized by acoustic nonlinearity of narrow band laser-generated surface wave. The higher harmonic components generated intrinsically by arrayed line laser beam were analyzed theoretically and acoustic nonlinearity was measured successfully on the surface of fatigue damaged aluminium 6061 alloy. The acoustic nonlinearity increased as a function of fatigue cycles and has close relation with damage level. Consequently, the nonlinear acoustic technique of laser-generated surface wave could be potential to characterize surface damages subjected to fatigue.

Advances in Hardware of Ultrasonic Propagation Imaging System (초음파전파영상화 시스템 하드웨어 발전)

  • Jeong, Hyo-Mi;Lee, Jeong-Ryul;Park, Chan-Ik
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.2
    • /
    • pp.214-219
    • /
    • 2012
  • 초음파전파영상화(UPI) 시스템은 2007년에 첫 논문 발표를 통해 시스템 개발이 보고된 이후 소프트웨어 및 하드웨어적 측면에서 다양한 형태로 발전된 시스템의 개발이 이루어졌다. 본 기고에서는 기본 UPI 시스템, 섬유파트랜스듀서 UPI 시스템, 순수광학시스템으로서 광섬유 센서 UPI 시스템, 완전비접촉 시스템으로서의 공기정압압전센서 UPI 시스템 및 레이저도플러진동계 UPI 시스템, 장거리 UPI 시스템, 옥외 적용성에 필수적인 저온환경 UPI 시스템 등을 소개한다.

Nondestructive Evaluation Technique of Painted Sandwich Control Surfaces of CN-235 using Full-field Pulse-echo Ultrasonic Propagation Imaging System (전영역 펄스-에코 초음파전파영상화 시스템의 CN-235의 도색된 샌드위치 조종면 In-situ 비파괴평가 기술)

  • Hong, Seung-Chan;Lee, Jung-Ryul;Park, Jongwoon
    • Composites Research
    • /
    • v.29 no.5
    • /
    • pp.288-292
    • /
    • 2016
  • In this paper, a novel ultrasonic propagation imaging system, called a full-field pulse-echo ultrasonic propagation imaging (FF PE UPI) system is introduced. The system nondestructively inspected targets with two-axis translation stage. The coincident laser beams for ultrasonic sensing and generation are scanned and pulse-echo mode laser ultrasounds are captured. This procedure makes it possible to generate full-field ultrasound in through-the-thickness direction as large as the scan area. Structural inspection results in the form of full-field ultrasonic wave propagation videos are introduced, which are painted sandwich control surfaces. In addition, the inspection results of FF PE UPI system are compared with conventional ultrasonic testing methods such as waterjet and portable C-scan.

A Femtosecond Laser Metrology on the Thermal Conductivity of a Nanoscale Superconductor Material (펨토초 레이저를 이용한 나노 스케일 초전도 재료의 열전도율 평가)

  • Kim, Yun Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.35 no.5
    • /
    • pp.314-320
    • /
    • 2015
  • The present study investigates the thermal characteristics of a nanoscale superconductor material. A thin-film of $YBa_2Cu_3O_7-x$ was deposited on a $SrTiO_3$ substrate by using a pulsed-laser deposition technique and characterized using an ultrafast laser system. In order to extract a thermal conductivity value, a numerical solution for a transient one-dimensional heat conduction equation was obtained using a finite-difference method. The curve-fit shows a value 1.2 W/mK, which is relatively lower than those of bulk materials. This research provides a material property of superconductor thin-film required for the thermal design of micro or nanodevices.

Fully Non-Contact Assessment of Acoustic Nonlinearity According to Plastic Deformation in Al6061 Alloy (Al6061 합금의 소성변형에 따른 음향비선형 특성의 완전 비접촉식 평가)

  • Lee, Hyeon;Chung, Cheon;Kim, Chung-Seok;Jhang, Kyung-Young
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.32 no.4
    • /
    • pp.388-392
    • /
    • 2012
  • This study proposes a fully non-contact measurement method to assess acoustic nonlinearity of narrowband surface waves generated by a line-arrayed laser beam by using a laser-ultrasonic detector in the way of two-wave mixing (TWM) method. This method was applied to figure out a relationship between plastic deformation and nonlinearity characteristics of a plastically deformed aluminum specimens. The experimental results showed that the acoustic nonlinearity of the laser-generated surface wave increased proportionally to the level of tensile deformation. This tendency is in good agreement with the result of measurement by contact method with PZT-transducer.

Development of a Laser-Generated Ultrasonic Inspection System by Using Adaptive Error Correction and Dynamic Stabilizer (적응적 에러 보정과 다이나믹 안정기를 이용한 레이저 유도 초음파 검사 시스템 개발)

  • Park, Seung-Kyu;Baik, Sung-Hoon;Park, Moon-Cheol;Lim, Chang-Hwan;Ra, Sung-Woong
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.5
    • /
    • pp.391-399
    • /
    • 2005
  • Laser-generated ultrasonic inspection system is a non-contact scanning inspection device with high spatial resolution and wide bandwidth. The amplitude of laser-generated ultrasound is varied according to the energy of pulse laser and the surface conditions of an object where the CW measuring laser beam is pointing. In this paper, we correct the generating errors by measuring the energy of pulse laser beam and correct the measuring errors by extracting the gain information of laser interferometer at each time. h dynamic stabilizer is developed to stably scan on the surface of an object for an laser-generated ultrasonic inspection system. The developed system generates ultrasound after adaptively finding the maximum gain time of an laser interferometer and processes the signal in real time after digitization with high speed. In this paper, we describe hardware configuration and control algorithm to build a stable laser-generated ultrasonic inspection system. Also, we confirmed through experiments that the proposed correction method for the generating errors and measuring errors is effective to improve the performance of a system.