• 제목/요약/키워드: 드라이브 샤프트

검색결과 16건 처리시간 0.027초

비틀림 하중을 받는 고주파열처리 드라이브 차축의 피로수명 평가 (Fatigue Life Estimation of Induction-Hardened Drive Shaft Under Twisting Loads)

  • 김태영;김태안;한승호
    • 대한기계학회논문집A
    • /
    • 제41권6호
    • /
    • pp.567-573
    • /
    • 2017
  • 자동차 부품 중 드라이브 샤프트는 엔진에서 발생하는 토크를 바퀴에 전달하는 동력 전달장치의 핵심 부품이다. 엔진에서 입력되는 비틀림 하중과 주행 중 발생하는 실동하중에 의한 부품의 파손을 방지하기 위해, 고주파 열처리로 강도 및 피로수명이 개선되고 있다. 본 연구에서는 고주파 열처리에 따른 드라이브 샤프트의 피로수명을 정량적으로 평가할 수 있는 피로수명 평가기법을 구축하였다. 드라이브 샤프트의 소재인 SAE10B38M2 강재로 모재 및 경화깊이가 서로 다른 고주파 열처리 시편 두 종을 제작하여 비틀림 하중 하에서의 전단 변형률 제어 피로시험을 진행하였고, 변형률-수명 피로수명 평가에 필요한 피로 물성값을 구하였다. 얻어진 피로 물성값을 이용하여 드라이브 샤프트의 변형률 기반 피로해석을 진행하였으며, 얻어진 피로수명 결과를 시제품 피로시험 결과와 비교하여 해석기법의 타당성을 검증하였다.

복합재료 자동차 부품의 설계 및 제조방법 (Design and manufacturing of composite automotive parts)

  • 이대길;오박균
    • 오토저널
    • /
    • 제16권2호
    • /
    • pp.45-54
    • /
    • 1994
  • 미국 등 선진국에서는 복합재료 자동차 차체 및 부품에 관한 연구를 활발히 수행하고 있다. 그러나, 국내 자동차 업계의 역사가 짧고, 보수성으로 인하여 복합재료 차체와 부품에 대한 연구와 응용이 부족한 형편이다. 따라서 본 고에서는 복합재료의 성질을 고찰한후에, 드라이브 샤프트와 Door Side Impact Beam을 복합재료로 설계하는 예를 설명하고자 한다.

  • PDF

일체형 중공 드라이브 샤프트 제작을 위한 점진적 열간 로터리 단조 공정 조건 예측 (Estimation of Conditions of Incremental Hot Rotary Forging Process for Monobloc Tubular Drive Shaft)

  • 이호진;국대선;안동규;정종훈;설상석
    • 한국정밀공학회지
    • /
    • 제33권4호
    • /
    • pp.287-293
    • /
    • 2016
  • A monobloc tubular drive shaft is designed to obtain the improved structural safety and the weight reduction of the drive shaft together. The monobloc tubular drive shaft can be manufactured from an incremental hot rotary forging process. The aim of this study was to experimentally determine conditions of an incremental hot rotary forging process for a monobloc tubular drive shaft. Induction heating experiments were performed to estimate a proper heating time of an initial workpiece in an induction heating process. Several incremental hot rotary forging experiments were carried out using a mechanical press with the designed set-up. The step distance and the step angle were chosen as controllable forming parameters. Based on the results of the experiments, the influence of forming parameters on the quality of the forged part was investigated. Finally, a forming map and a proper forming condition of the incremental hot rotary forging process were estimated.

비틀림 모멘트가 부가되는 일체형 중공 드라이브 샤프트의 구조 안정성 분석 (Investigation of Structural Safety of Monobloc Tubular Drive Shaft Subjected to Torque)

  • 국대선;안동규;이호진;정종훈
    • 한국정밀공학회지
    • /
    • 제32권12호
    • /
    • pp.1073-1080
    • /
    • 2015
  • A drive shaft is used to transmit torque and rotation through the connection of components of a drive train. Recently, a monobloc drive shaft without welding regions is developed to improve the safety of the drive shaft. The drive shaft bears the shear stress induced by torque. The objective of this paper is to investigate into the structural safety of a monobloc tubular drive shaft subjected to torque. Elasto-plastic finite element (FE) analysis is performed to estimate the deformation behavior of the drive shaft and stress-strain distribution in the drive shaft. Several techniques are used to create finite element (FE) model of the monobloc tubular drive shaft subjected to torque. Through the comparison of the results of FE analyses with those of experiments from the viewpoint of rotational angle, appropriate correction coefficients for different load conditions are estimated. The safety of the tubular drive shaft is examined using the results of FE analyses for different load conditions. Finally, it is noted that the designed tubular drive shaft has a sufficient structural safety.

중공 드라이브 샤프트의 설계에 관한 연구 (A study on the Design on the Tubular Drive Shaft)

  • 김우강;고준빈;김홍배
    • 한국기계가공학회지
    • /
    • 제8권3호
    • /
    • pp.7-12
    • /
    • 2009
  • This study aims to find the friction welding and induction harden conditions, which are obtained by welding conditions, and the friction welding characteristics and induction harden conditions of tubular shaft were investigated with respect to low load test, high load test. Friction welding and induction harden machine have been widely used in manufacturing reflects of metal. The material of solid and tubular shaft selected that is used for parts of automobile steel. Such as steel are easy to be machined because of their proper material. As a result I obtained the data of friction welding conditions makes good and the condition of friction and get the tubular condition. The purpose of this study is to find fatigue test condition and induction harden characteristics design for tubular shaft.

  • PDF

자동차 드라이브 샤프트와 액슬 시스템의 트라이볼로지적인 특성에 관한 고장사례 고찰 (Failure Examples Study for Tribological Characteristics of Drive Shaft and Axle System in Vehicles)

  • 이일권;문학훈;염광욱
    • Tribology and Lubricants
    • /
    • 제29권6호
    • /
    • pp.397-402
    • /
    • 2013
  • This study examined the tribological characteristics of the drive shaft and axle system in vehicles. The first drive shaft example contained end play for a CV joint that transferred part of the transmission power to the wheel. The joint part of the drive shaft was deformed because of reduced durability due to wear. Thus, vibrations caused the body to shake and become unbalanced when the drive shaft transferred the power. The second example was the cross-section of a shaft that connected the slip-connection of the propeller shaft on the input side to the yoke flange of the output side; the durability was reduced because of corrosion. End play caused by wear between the bearing and cross-section shaft appeared to cause shaking. In the third example, a grease leak reduced lubrication and thus caused damage to the hub bearing and inside the knuckle. The failure was produced by sticking. The fourth example had noise produced by the gear and gear transfer. This was due to the backlash of the pinion and few ring gears for the differential gear. Therefore, drive shaft and axle systems must be thoroughly checked and managed to minimize and reduce failure phenomena.

강도 조건을 고려한 동력 전달 드라이브 샤프트의 근사최적설계 (Approximate Optimization of the Power Transmission Drive Shaft Considering Strength Design Condition)

  • 소해룡;이종수
    • 한국생산제조학회지
    • /
    • 제24권2호
    • /
    • pp.186-191
    • /
    • 2015
  • Presently, rapidly changing and unstable global economic environments demand engineers. Products should be designed to increase profits by lowering costs and provide distinguished performance compared with competitors. This study aims to optimize the design of the power-transmission drive shaft. The mass is reduced as an objective function, and the stress is constrained under a constant value. To reduce the number of experiments, CCD (central composite design) and D-Optimal are used for the experimental design. RSM (response surface methodology) is employed to construct a regression model for the objective functions and constraint function. In this problem, there is only one objective function for the mass. The other objective function gives 1; thus, NSGA-II is used.

등속조인트용 그리스 마찰특성 연구 (Research on Friction Characteristics of Constant Velocity Joint Grease)

  • 이승욱;배대윤
    • Tribology and Lubricants
    • /
    • 제29권4호
    • /
    • pp.223-227
    • /
    • 2013
  • A GAF (generated axial force) is produced at a plunging-type CVJ (constant velocity joint). A high GAF can cause vibrations in a vehicle. Grease is used to reduce friction between the roller and the track of the outer case of a CVJ. The grease performance depends on the surface conditions and operating temperature. The surface of the outer case is extremely rough and hard. In recent times, the maximum operating temperature of CVJs has crossed $140^{\circ}C$, because the exhaust line is now located close to the CVJ. In this study, we examined the friction characteristics of friction additives at $25-150^{\circ}C$ and determined an optimal formulation with a low friction coefficient. This formulation can be used to develop low-friction grease that can reduce the GAF produced at a CVJ by approximately 7-26%.

자동차용 복합재료 드라이브샤프트 설계 및 성형 연구 (Design and Manufacturing of Composite Drive Shaft for Automobiles)

  • 김태욱;이상관;전의진;김완두;이대길
    • 한국자동차공학회논문집
    • /
    • 제1권3호
    • /
    • pp.109-117
    • /
    • 1993
  • A carbon/epoxy composite drive shaft used for the power transmission of the automobiles with steel joints. Compared with the metallic drive shaft, the composite one has the weight saving of 50% with equivalent torsional strength and fatigue characteristics. In this study, the filament winding technique for the composite tube and composite/metal joining technique are estabilished. The performance test of the drive shaft is carried out. The optimal condition of the surface roughness of the steel adherend was $1.5{{\mu}m}$ to $2.5{{\mu}m}$, and the optimal condition of the bonding thickness was 0.15mm. Maximum torque and torsional stiffness of the composite drive shaft manufactured by filament winding process were found to be $210kg{\cdot}m$ and $18.5kg{\cdot}m/deg$, respectively.

  • PDF