• Title/Summary/Keyword: 되먹임 제어

Search Result 96, Processing Time 0.028 seconds

The Performance Verification of Optimal State Feedback Controllers via The Inverted Pendulum (도립진자 시스템을 통한 최적 상태 되먹임 제어기의 성능 검증)

  • Lee, Jong-Yeon;Lee, Bo-Ra;Hyun, Chang-Ho
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.20 no.6
    • /
    • pp.768-773
    • /
    • 2010
  • This paper presents the performance verification of the optimal state feedback controller via inverted pendulum systems. The proposed method generates the optimal control inputs satisfying both the constrained input and the performance specification. In addition, it reduces the steady-state error by adopting the integral control technique. In order to verify the performance of the proposed method, we apply both the proposed method and the general state feedback control to an inverted pendulum, CEM-IP-01 in the experiment.

Active Control of Clamped Beams using Acceleration Feedback Controllers (가속도 되먹임 제어기를 이용한 양단지지보의 능동 제어)

  • Shin, Chang-Joo;Hong, Chin-Suk;Jeong, Weui-Bong;Jeong, Sang-Woo
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.12
    • /
    • pp.1190-1199
    • /
    • 2010
  • This paper reports active control of clamped beams using acceleration feedback controllers (AF). The equations of motion of clamped beam under force and moment pairs were derived and the equations of AF controllers were formulated. The effect of the parameters - gain and damping ratio - of the AF controllers on the open loop transfer function was investigated mainly in terms of the system stability. Increasing the gain of the AF controller tuned at a mode, the magnitude of the open loop transfer function is increased at all frequencies. The increase of the damping ratio of the AF controller leads to decrease the magnitude of the open loop transfer function and modifies its phase characteristics to be more stable. Three AF controllers connected in parallel were then proposed. Each AF controller is tuned at the 2nd, 3rd and 4th modes, respectively. Their parameters were determined to remain the system to be stable based on the results of the parametric study. A significant reduction in vibration at the 3 modes can be obtained.

Position Tracking Control of Flexible Piezo-beam Considering Actuator Hysteresis (작동기 히스테리시스를 고려한 유연 피에조빔의 위치추적제어)

  • Nguyen, Phuong-Bac;Choi, Seung-Bok
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.20 no.2
    • /
    • pp.129-137
    • /
    • 2010
  • This paper presents a position tracking control of a flexible beam using the piezoelectric actuator. This is achieved by implementing both feedforward hysteretic compensator of the actuator and PID feedback controller. The Preisach model is adopted to develop the feedforward hysteretic compensator. In the design of the compensator, estimated displacement of the piezoceramic actuator is used based on the limiting triangle database that results from collecting data of the main reversal curve and the first order ascending curves. Experimental implementation is conducted for position tracking control and performance comparison is made between a PID feedback controller without considering the effect of hysteresis, and a PID feedback controller integrated with the feedforward hysteretic compensator.

Structured Static Output Feedback Stabilization (구조적인 제약을 갖는 정적 출력 되먹임 안정화 제어기)

  • Lee, Joon Hwa
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.50 no.3
    • /
    • pp.155-159
    • /
    • 2013
  • In this paper, a nonlinear matrix inequality problem and a nonlinear optimization problem are proposed for obtaining a structured static output feedback controller. The proposed nonlinear optimization problem has LMI (Linear Matrix Inequality) constraints and a nonlinear objective function. Using the conditional gradient method, the nonlinear optimization problem can be solved. A numerical example shows the effectiveness of the proposed approach.

Control-Gain Estimation of Energy Dissipation Control Algorithms (에너지소산 제어 알고리듬의 제어이득 산정)

  • Lee Sang Hyun;Kang Sang Hoon;Min Kyung-Won
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.17 no.4
    • /
    • pp.343-350
    • /
    • 2004
  • This study is on control gain estimation of energy dissipation control algorithms. Velocity feedback saturated, bang bang, and energy gain control algorithms are proposed based on the Lyapunov stability theory and their performances are evaluated and compared. Saturation problem is considered in the design of the velocity feedback saturated and energy-gain control algorithms, and chattering problem in bang bang control is solved by using boundary layer. Numerical results show that the proposed control algorithms can dissipate the structural energy induced by wind loads efficiently.

Feedback Reduction Scheme of SDMA with Quantized CSI using User Restriction (사용자 제한을 이용한 양자화된 채널 상태 정보를 갖는 공간 분할 다중 접속 방식의 되먹임 감소 기법)

  • Seo, Woo-Hyun;Park, Sung-Soo;Min, Hyun-Kee;Hong, Dea-Sik
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.47 no.2
    • /
    • pp.25-33
    • /
    • 2010
  • Introducing the quantized channel state information (CSI), space division multiple access (SDMA) can extract the multiplexing gain with the limited feedback burden. However, huge signaling burden of feedback can still suffer SDMA system because the total feedback data of SDMA is linearly dependent on the number of users. Hence, we propose a new feedback scheme to control the feedback load decided by the number of users. In this scheme, the cut-off level, which restricts the feedbacks of poor conditioned users, is suggested for the reduction of the feedback burden without the performance loss. From simulation results, then, we show that the proposed feedback scheme can achieve not only the sum-rate gain but also the reasonable feedback reduction.

Nano-scale high-accuracy displacement measurement using the Michelson laser interferometer controlled with a feedback circuit (되먹임 회로로 제어하는 Michelson 레이저 간섭계를 이용한 Nano-scale 미세변위 측정)

  • Ahn, Seong-Joon;Oh, Tae-Sik;Ahn, Seung-Joon
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.8 no.5
    • /
    • pp.1007-1012
    • /
    • 2007
  • A novel Michelson interferometer controlled with a feedback circuit(MIFC) has been developed and its performance has been evaluated. This new interferometer can measure the displacement of the sample by directly reading the feedback bias applied to the PZT whose piezoelectric characteristic is known. The experimental result showed that the step height the silicon membrane measured by using MIFC was actually same with the value measured by SEM, which confirms that MICS is an easy and accurate method for the nano-scale displacement measurement.

  • PDF

Noninteracting Feedbeck Control of Multivariable Nonlinear Systems (다변수 비선형시스템의 noninteracting 되먹임 제어)

  • 하인중;고명삼
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.36 no.7
    • /
    • pp.501-513
    • /
    • 1987
  • Conditions for achieving noninteraction in nonlinear multivariable systems via the decomposition of state space are well established. The main contribution of this paper is to fully characterize the class of decomposing control laws. The characterization corresponds to a family of simple control laws which are applied to a standard decomposed system(SDS). The SDS is similar to the decomposed systems of Isidori, Krener, Gori-Giorgi, and Monaco but has a finer structure. The finer structure parallels the one used by Gilbert for linear systems. A weaker form of noninteraction, based on input-output behaviour, is decoupling. Some connections between decomposition and decoupling are also established. An example illustrating the importance of the results is given.

A Study on the Dynamic Characteristics Improvement of Direct Drive Electro-mechanical Actuation System using Dynamic Force Feedback Control (동적 하중 되먹임 제어를 사용한 직구동 방식 전기기계식 구동장치시스템의 동특성 개선에 관한 연구)

  • Lee, Hee-Joong;Kang, E-Sok;Song, Ohseop
    • Journal of the Korean Society for Aeronautical & Space Sciences
    • /
    • v.45 no.4
    • /
    • pp.328-341
    • /
    • 2017
  • In the control actuator system of a launch vehicle based on thrust vectoring, the interaction between electro-mechanical position servo and inertial load are combined with the dynamic characteristics of the flexible vehicle support to generate synthetic resonance. This occurred resonance is fed back to the attitude control system and can influence stability of launch vehicle. In this study, we proposed a simulation model to analyze synthetic resonance of electro-mechanical actuation system for thrust vector control and explained the results of simulation and test using dynamic force feedback control which improves dynamic characteristics of servo actuation system by reducing synthetic resonance.