• Title/Summary/Keyword: 동탄성

Search Result 235, Processing Time 0.031 seconds

Determination of Dynamic Modulus of cold In-place Recycling Mixtures with Foamed Asphalt (폼드아스팔트를 이용한 현장 상온 재생 아스팔트 혼합물의 동탄성계수 결정)

  • Kim, Yong-Joo Thomas;Lee, Ho-Sin David
    • International Journal of Highway Engineering
    • /
    • v.11 no.1
    • /
    • pp.1-12
    • /
    • 2009
  • A new mix design procedure for cold in-place recycling using foamed asphalt (CIR-foam) has been developed for Iowa Department of Transportation. Some strengths and weaknesses of the new mix design parameters were considered and modified to improve the laboratory test procedure. Based on the critical mixture parameters identified, a new mix design procedure was developed and validated to establish the properties of the CIR-foam mixtures. As part of the validation effort to evaluate a new CIR-foam mix design procedure, dynamic moduli of CIR-foam mixtures made of seven different reclaimed asphalt pavement (RAP) materials collected throughout the state of Iowa were measured and their master curves were constructed. The main objectives of this study are to provide: 1) standardized testing procedure for measuring the dynamic modulus of CIR-foam mixtures using new simple performance testing (SPT) equipment; 2) analysis procedure for constructing the master curves for a wide range of RAP materials; and 3) impacts of RAP material characteristics on the dynamic modulus. Dynamic moduli were measured at three different temperatures and six different loading frequencies and they were consistent among different RAP sources. Master curves were then constructed for the CIR-foam mixtures using seven different RAP materials. Based upon the observation of the constructed master curves, dynamic moduli of CIR-foam mixtures were less sensitive to the loading frequencies than HMA mixtures. It can be concluded that at the low temperature, the dynamic modulus is affected by the amount of fines in the RAP materials whereas, at the high temperature, the dynamic modulus is influenced by the residual binder characteristics.

  • PDF

지능 외팔보의 동탄성 실험

  • 박용군;최승복;정재천;김기선
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1992.04a
    • /
    • pp.206-210
    • /
    • 1992
  • 본 연구는 ER(electro-rheological) 유체를 특징으로하는 지능외팔보의 고유주파수, 강성, 댐핑 등이 전장(electric field)에 따라 변화함을 고찰하였고 향후 능동제어계(active control system)에서 ER유체가 엑튜에이터로써 사용가능함을 보여주었다. ER 유체의 종류, 농도, 체적비, 시편의 전하특성에 따른 지능보의 동탄성 특성을 자유진동과 강제진동하에서 실험하여 비교분석하였다.

Effect of Temperature and Aging on the Relationship Between Dynamic and Static Elastic Modulus of Concrete (온도와 재령이 콘크리트의 동탄성계수와 정 탄성계수의 상관관계에 미치는 영향)

  • 한상훈;김진근;박우선;김동현
    • Journal of the Korea Concrete Institute
    • /
    • v.13 no.6
    • /
    • pp.610-618
    • /
    • 2001
  • This paper investigates the relationships between dynamic elastic modulus and static elastic modulus or compressive strength according to curing temperature, aging, and cement type. Based on this investigation, the new model of the relationships we proposed. Impact echo method estimates the resonant frequency of specimens and uniaxial compression test measures the static elastic modulus and compressive strength. Type I and V cement concretes, which have the water-cement ratios of 0.40 and 0.50, are cured under the isothermal curing temperatures of 10, 23, and 50$\^{C}$ Cement type and aging have no large influence on the relationship between dynamic and static elastic modulus, but the ratio of dynamic and static elastic modulus comes close to 1 as temperature increases. Initial chord elastic modulus which is calculated at lower strain level of stress-strain curve, has the similar value to dynamic elastic modulus. The relationship between dynamic elastic modulus and compressive strength has the same tendency as the relationship between dynamic and static elastic modulus according to cement type, temperature and aging. The proposcd relationship equations between dynamic elastic modulus and static elastic modulus or compressive strength properly estimates the variation of relationships according to cement type md temperature.

Effect of Size Factor on Estimating Elastic Modulus of Disk-Shaped Concrete Specimen Using Impact Resonance Test (충격공진법을 이용한 콘크리트 원판 시편의 탄성계수 추정에 크기 인자가 미치는 영향)

  • Kim, Min-Suk;Son, Joeng Jin;Lee, Chang Joon;Chung, Chul-Woo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.23 no.1
    • /
    • pp.11-22
    • /
    • 2023
  • In this work, a depth-by-depth evaluation on the deterioration of concrete is suggested by utilizing disk shaped concrete specimens. Dynamic elastic modulus of cylindrical concrete was measured using a free-free resonance column method and compared with dynamic elastic modulus of disk-shaped concrete measured by impulse excitation technique(IET) and impact resonance(IR). According to the results of the experiment, both IET and IR methods showed a smaller difference in dynamic elastic modulus with smaller deviation in data when thickness of the disk specimen was increased. This trend was more evident from dynamic elastic modulus measured by IR method compared to that measured by IET. Variation in data was also smaller with the IR result. To increase the accuracy of the data, it is recommended to use the IR method for disk specimen with a diameter of 100mm and a thickness of 25mm.

Modeling and Vibration Control of ERF-Based Intelligent Structures via Sandwich Beam Theory (샌드위치 보 이론을 이용한 ERF 지능구조물의 모델링 및 진동제어)

  • Park, Y.K.;Choi, S.B.;Cheong, C.C.
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.13 no.2
    • /
    • pp.110-122
    • /
    • 1996
  • 본 논문에서는 전기유동유체(Electro-Rheological Fluid : ERF)를 함유하는 지능구조물의 동적 모델링 및 진동제어를 수행하였다. 먼저 실리콘 오일을 기본용매로 하여 조성된 ERF의 복소 전단모듈러스를 전장부하와 가진 주파수의 함수로 동적 회전모드 실험을 통하여 도출한 후, 이를 샌드위치 보 이론과 연계하여 동적 모델링을 실시하였다. 도출된 6차 편미분방정식 형태의 지배 방정식을 유한요소 모델로 이산화하여 전장부하에 따른 지능구조물의 동탄성 특성값인 감쇠 고유 주파수 및 모달 손실계수를 주파수 영역에서 얻었다. 그리고 ERF를 함유한 샌드위치 형태의 지능구조물을 제작한 후 실험적으로 얻은 동탄성 특성값과 모델에 의해 예측된 동탄성 특성값을 비교 고찰하여 제시된 동적 모델에 대한 타당성을 입증하였다. 또한 모델을 통해 전장부하 함수로 예측된 주파수 응답곡선 중에서 각 주파수 대역에 대해 최소 변위가 되는 응답곡선을 요구응답으로 설정한 후, 그에 해당하는 전장부하를 선정하는 논리적인 능동 진동제어 알고리즘을 제안하였다. 제어알고리즘의 유용성을 입증하기 위해 실험적으로 수행된 능동 진동제어 결과를 주파수영역과 시간영역에서 제시하였다.

  • PDF

Resilient Modulus of Weathered Granite Soil in the Central Part of Korea (화강암풍화토의 동탄성계수에 관한 연구 -중부지역을 중심으로-)

  • 김주한;이종규
    • Geotechnical Engineering
    • /
    • v.6 no.1
    • /
    • pp.35-42
    • /
    • 1990
  • Over the years, most pavement designs based on soil strength and permanent strain are almost independent of soil elasticity. However, it was found that plasticity and elasticity of soil have both effected on the failure of pavement structures. The elasticity of soil, hence, using the resilient modulus is reflected for recent pavement design. Although the current AASHTO specifications(1986) for pavement design had changed the soil support value to the resilient modulus, triaxial devices conducting the resilient modulus test have not been fully equipped in a great majority of laboratories. Thus, in the present work, such a resilient modulus is usually derived(from CBR, K values, etc.) by estimating equations. The purpose of this study is to evaluate the resilient modulus of weathered granite soils sampled from 4 points of the central region of Korea by means of AASHTO T 274-82. According to this, some empirical equations for predicting that of the weathered granite soil are proposed and then, the relationship to convert CBR into the resilient modulus is developed.

  • PDF

Analysis of Scattered Fields Using High Frequency Approximations (고주파수 근사 이론을 이용한 결함으로부터의 초음파 산란장 해석)

  • Jeong, Hyun-Jo;Kim, Jin-Ho
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.20 no.2
    • /
    • pp.102-109
    • /
    • 2000
  • This paper describes two different theories used to model the scattering of ultrasound by a volumetric flaw and a crack-like flaw. The elastodynamic Kirchhoff approximation (EKA) and the geometrical theory of diffraction (GTD) are applied respectively to a cylindrical cavity and a semi-infinite crack. These methods are known as high frequency approximations. The 2-D elastodynamic scattering problems of a plane wave incident on these model defects are considered and the scattered fields are expressed in terms of the reflection and diffraction coefficients. The ratio of the scattered far field amplitude to the incident wave amplitude is computed as a function of the angular location and compared with the boundary element solutions.

  • PDF

복합재료 유연 링키지 시스템의 동탄성 해석

  • 정재천;최승복;정응길
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1991.11a
    • /
    • pp.49-53
    • /
    • 1991
  • 최근 단위 시간당 생산성 향상을 위한 기계적 시스템의 작업속도가 계속적으로 증가되고 있으며, 그에 따라 관성력과 모터의 회전 토오크를 줄이기 위하여 시스템을 구성하고 있는 요소들의 구조 경량화 작업이 필요하게 되었다. 따라서 종래의 해석이론을 벗어난 메카니즘의 동탄성해석에 대한 중요성이 대두되었고, 이는 특히 기계의 작동속도에 대한 공진현상 및 위치 정확도와 밀접한 관계가 있기 때문에 품질향상면에 있어서 매우 중요하게 인식되고 있다.(중략)

  • PDF

Predictive Equation of Dynamic Modulus for Hot Mix Asphalt with Granite Aggregates (화강암 골재를 이용한 아스팔트 혼합물의 동탄성 계수 예측방정식)

  • Lee, Kwan-Ho;Kim, Hyun-O;Jang, Min-Seok
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.26 no.3D
    • /
    • pp.425-433
    • /
    • 2006
  • The presented work provided a predictive equation for dynamic modulus of hot mix asphalt, which showed higher reliability and more simplicity. Lots of test result by UTM at laboratory has been used to develop the precise predictive equation. Evaluation of dynamic modulus for 13mm and 19mm surface course and 25mm of base course of hot mix asphalt with granite aggregate and two asphalt binders (AP-3 and AP-5) were carried out. Superpave Level 1 Mix Design with gyrator compactor was adopted to determine the optimum asphalt binder content (OAC) and the measured ranges of OAC were between 5.1% and 5.4% for surface HMA, and around 4.2% for base HMA. The dynamic modulus and phase angle were determined by testing on UTM, with 5 different testing temperature (-10, 5, 20, 40, & $55^{\circ}C$) and 5 different loading frequencies (0.05, 0.1, 1, 10, 25 Hz). Using the measured dynamic modulus and phase angle, the input parameters of Sigmoidal function equation to represent the master curve were determined and these will be adopted in FEM analysis for asphalt pavements. The effect of each parameter for equation has been compared. Due to the limitation of laboratory tests, the reliability of predictive equation for dynamic modulus is around 80%.

Correlation between Dynamic Characteristics of Isolation Material and Impact Noise Reduction of Light-weight Impact Source (충격음 저감재의 동특성과 실험실 경량충격음레벨 저감량의 상관관계)

  • 이주원;정갑철;권영필
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2003.05a
    • /
    • pp.191-195
    • /
    • 2003
  • 충격음 저감재의 동탄성계수와 감쇠계수는 차단성능을 평가하는데 있어 중요한 물성치가 된다. 저감재의 동탄성계수는 뜬바닥구조의 고유진동수를 결정짓게 되며, 저감재의 동탄성계수가 높을수록, 즉 고유진동수가 높아짐에 따라 실험실 경량충격음레벨 저감량은 지수함수적으로 감소됨을 실험을 통해 알 수 있다. 또한, 저감재를 포함한 뜬바닥구조를 1자유도 진동계로 가정한 이론값과 실험실 경량충격음레벨 저감량의 결과가 비교적 잘 일치하는 것으로 나타났으며, 이 때 감쇠계수의 영향은 반드시 고려되어야 한다.

  • PDF