Determination of Dynamic Modulus of cold In-place Recycling Mixtures with Foamed Asphalt

폼드아스팔트를 이용한 현장 상온 재생 아스팔트 혼합물의 동탄성계수 결정

  • Published : 2009.03.15

Abstract

A new mix design procedure for cold in-place recycling using foamed asphalt (CIR-foam) has been developed for Iowa Department of Transportation. Some strengths and weaknesses of the new mix design parameters were considered and modified to improve the laboratory test procedure. Based on the critical mixture parameters identified, a new mix design procedure was developed and validated to establish the properties of the CIR-foam mixtures. As part of the validation effort to evaluate a new CIR-foam mix design procedure, dynamic moduli of CIR-foam mixtures made of seven different reclaimed asphalt pavement (RAP) materials collected throughout the state of Iowa were measured and their master curves were constructed. The main objectives of this study are to provide: 1) standardized testing procedure for measuring the dynamic modulus of CIR-foam mixtures using new simple performance testing (SPT) equipment; 2) analysis procedure for constructing the master curves for a wide range of RAP materials; and 3) impacts of RAP material characteristics on the dynamic modulus. Dynamic moduli were measured at three different temperatures and six different loading frequencies and they were consistent among different RAP sources. Master curves were then constructed for the CIR-foam mixtures using seven different RAP materials. Based upon the observation of the constructed master curves, dynamic moduli of CIR-foam mixtures were less sensitive to the loading frequencies than HMA mixtures. It can be concluded that at the low temperature, the dynamic modulus is affected by the amount of fines in the RAP materials whereas, at the high temperature, the dynamic modulus is influenced by the residual binder characteristics.

폼드아스팔트를 이용한 현장 상온 재생아스팔트 혼합물에 대한 배합설계법이 아이오아 주 교통국에서 사용하기 위해 개발되었다. 상온 재생 폼드아스팔트 혼합물의 배합설계를 위한 실내시험절차를 개선하기 위하여 배합설계에 영향을 미치는 중요한 배합설계변수들을 결정하여 상온 재생 폼드아스팔트 혼합물의 특성을 반영할 수 있는 새로운 배합설계절차를 개발하였다. 개발된 배합설계법의 검증을 위한 한 가지 방법으로 상온 재생 폼드아스팔트 혼합물의 동탄성계수를 측정하였다. 본 연구에서는 새로운 simple performance testing 장비를 이용한 상온 재생 폼드아스팔트 혼합물의 동탄성계수 측정을 위한 표준시험절차를 정립하고, 7가지 재생 아스팔트 골재를 사용하여 생산된 상온 재생 폼드아스팔트 혼합물의 동탄성 계수를 측정하여 마스터곡선을 작성하였다. 또한 재생 아스팔트 골재의 특성이 상온 재생 폼드아스팔트혼합물의 동탄성 계수에 미치는 영향을 조사하였다. 3가지 온도와 6가지의 하중주기에서 측정된 상온 재생 폼드아스팔트 혼합물의 동탄성계수는 7가지 재생 아스팔트 골재에서 일관된 값을 나타내었으며, 작성된 상온 재생 폼드아스팔트 혼합물의 마스터곡선은 가열 아스팔트 혼합물의 마스터곡선에 비해 하중주기에 대해 덜 민감한 것으로 평가되었다. 저온에서는 재생 아스팔트 골재의 잔골재 함유량이 상온 재생 폼드아스팔트 혼합물의 동탄성계수에 영향을 미치는 것으로 나타났으며, 고온에서는 재생 아스팔트 골재의 잔류 아스팔트 특성이 상온 재생 폼드아스팔트 혼합물의 동탄성계수에 영향을 미치는 것으로 나타났다.

Keywords

References

  1. AIPCR and PIARC. (2002) "old In-Place Recycling of Pavements with Emulsion or Foamed Bitumen." Association Mondiale de la Route (AIPCR) and World Road Association (PIARC) Draft Report, Version 3.1A.
  2. ASTM. (2003). "Standard Test Method for Recovery of Asphalt from Solution by Abson Method." ASTM D 1856-95a, American Society for Testing and Materials, West Conshohocken, PA.
  3. ASTM. (2006). "Standard Test Method for Penetration of Bituminous Materials." ASTM D 5, American Society for Testing and Materials, West Conshohocken, PA.
  4. AASHTO. (2007) 'Determining Dynamic Modulus of Hot-Mix Asphalt Concrete Mixtures (HMA)." TP 62-07, American Associate of State Highway and Transportation Offices, Washington D.C.
  5. AASHTO (2001). "Bulk Specific Gravity of Compacted Bituminous Mixtures Using Saturated Surface-Dry Specimens." AASHTO T 166, American Associate of State Highway and Transportation Offices, Washington D.C.
  6. Bonnaure, F., Gest, G., Gravois, A., and Uge, P. (1977) "A New Method of Predicting the Stiffness of Asphalt Paving Mixtures." Proceedings of Association of Asphalt Paving Technologists, Vol. 46, pp. 64-100.
  7. Bonaquist, R. F., Christensen, D. W. and Stump, W. (2003) "Simple Performance Tester for Superpave Mix Design Development and Evaluations." Transportation Research Record, NCHRP Report 513.
  8. Brown, E. R., Prowell, B. Cooley, A., Zhang, J., and Powell, B. (2004). 'Evaluation of Rutting Performance at the 2000 NCAT Test Track." Journal of the Association of Asphalt Pavement Technologist, Volume 73, pp. 287-336.
  9. Birgisson, B., Roque, R., Kim, J. and Pham, L. V.(2004) "The Use of Complex Modulus to Characterize the Performance of Asphalt Mixtures and Pavements in Florida." Final Report, 4910-4501-784-12, Florida Department of Transportation.
  10. Clyne, T. R., Li, X., Marasteanu, M. O., and Skok, E. L. (2003) 'Dynamic Modulus and Resilient Modulus of Mn/Road Asphalt Mixtures." Final Report, MN/RC-2003-09, Minnesota Department of Transportation.
  11. Drescher, A., Newcomb, D. E., and Zhang, W. (1997) "Interpretation of Indirect Tension Test Based on Viscoelasticity." Transportation Research Record 1590, TRB, National Research Council, Washington, D. C., pp 45-52.
  12. Ekingen, E. R. (2004). 'Determining Gradation and Creep Effects in Mixtures Using the Complex Modulus Test." Thesis of Mater Degree, University of Florida.
  13. Guide for Mechanical-Empirical Design of New and Rehabilitated Pavement Structures. NCHRP Project 1-37A, www.trb.org/mepdg/. Accessed March 3, 2008.
  14. Kim, Y. and Lee, H. (2006) 'Development of Mix Design Procedure for Cold In-Place Recycling with Foamed Asphalt." Journal of Materials in Civil Engineering, ASCE, Vol. 18, No 1, pp.166-124.
  15. Kim, Y., Lee, H, and Heitzman, M. (2007) 'Validation of New Mix Design Procedure for Cold In-place Recycling with Foamed Asphalt for Iowa Department of Transportation." Journal of Materials in Civil Engineering, ASCE, Vol. 19, No 11, pp. 994-1000.
  16. Lee, H. and Kim, Y. (2003) 'Development of a Mix Design Process for Cold In-Place Rehabilitation using Foamed Asphalt." Final Report, Iowa Highway Research Board, Iowa Department of Transportation.
  17. Lundy, J. R., Sandoval-Gil, J., Brickman, A. and Patterson, B. (2005) "Asphalt Mix Characterization Using Dynamic Modulus and APA Testing" Final Report, FHWA-OR-RD-06-09, Oregon Department of Transportation and Federal Highway Administration.
  18. Marquis, B., Bradbury, R. L., Colson, S., Malick, R. B., Nanagiri, Y. B., Gould, J. S., O'Brien, S. and Marshall., M. (2003) "Design, Construction and Early Performance of Foamed Asphalt Full Depth Reclaimed (FDR) Pavement in Maine." TRB 82nd Annual Meeting (CD-ROM), Transportation Research Board, Washington. D.C.
  19. Stroup-Gardiner, M. and Newcomb, D. E. (1997) 'Investigation of Hot Mix Asphalt Mixtures at MnRoad." Final Report 97-06, Minnesota Department of Transportation.
  20. Tran, N. H. and Hall, K. D. (2006) 'Evaluation Protocols for Dynamic Modulus for Hot Mix Asphalt." TRB 85th Annual Meeting (CD-ROM), Transportation Research Board, Washington. D.C.
  21. Thomas, T. W. and Richard, W. M. (2007). "Mechanistic-Empirical Design Guide Modeling of Asphalt Emulsion Full Depth Reclamation Mixes." TRB 86th Annual Meeting (CD-ROM), Transportation Research Board, Washington, D.C.
  22. Williams, M. L., Landel, R. F. and Ferry, J. D. (1955). "The Temperature Dependence of Relaxation Mechanism in Amorphous Polymers and other Glass Forming Liquids." Journal of the American Chemical Society, Vol. 77, pp 3701-3706. https://doi.org/10.1021/ja01619a008
  23. Witczak, M. W. and Rott, R. E. (1974) "Summary of Complex Modulus Laboratory Test Procedures and Results." STP 561, American Society for Testing and Materials, pp 67-94.
  24. Witczak, M. W., Kaloush, K., Pellinen, T., El-Basyouny, M. and Von Quintus, H. (2002). "Simple performance test for Superpave Mix Design." NCHRP Rep. No. 465, Transportation Research Board, Washington D.C.
  25. Zhang, W., Drescher, A. and Newcomb, D. E. (1997). 'Viscoelastic Behavior of Asphalt Concrete in Diametral Compression." Journal of Transportation Engineering, ASCE, Vol. 123, pp495-502. https://doi.org/10.1061/(ASCE)0733-947X(1997)123:6(495)